ILAM: Cross-Fusion of Latent and Attention Features for Explainable Medical Image Classification

人工智能 计算机科学 模式识别(心理学) 计算机视觉
作者
Anshul Sharma,Utkarsh Varman,Vandana Bharti,Abhinav Kumar,Amit Kumar Singh,Sanjay Kumar Singh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3561024
摘要

Accurate and interpretable AI models play a critical role in medical image analysis. However, despite advancements in explainable AI (XAI), existing methods struggle with inconsistent interpretability. To overcome this limitation, we introduce the Integrated Latent and Attention Mapping (ILAM) framework, which enhances both classification accuracy and explainability by fusing local and global feature representations. ILAM integrates a custom-designed Autoencoder (AE) with a Vision Transformer (ViT), where the AE learns fine-grained local features through unsupervised patchwise image reconstruction in the latent space. These local features are then fused with global representations extracted by ViT, creating a hybrid model that improves both performance and post hoc interpretability. To refine explainability, ILAM incorporates a modified attention rollout mechanism, which recursively aggregates latent feature representations and attention weights to produce precise and stable activation maps. We evaluate ILAM on three publicly available medical imaging datasets-BreakHis, Chest X-Ray, and Retinal, demonstrating its superior performance over transformer-based models such as ViT, DeiT, CvT, and SwinT. ILAM consistently generates detailed and reliable activation maps, providing clearer visualizations of critical image regions influencing model decisions. By effectively combining local and global feature fusion, ILAM establishes itself as a robust and interpretable framework for medical image classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
library2025发布了新的文献求助10
刚刚
MU完成签到,获得积分10
刚刚
共享精神应助yancy采纳,获得10
刚刚
残山醉梦完成签到,获得积分10
5秒前
zp完成签到,获得积分20
5秒前
5秒前
6秒前
大河向东刘先生完成签到,获得积分10
7秒前
8秒前
小文殊发布了新的文献求助10
10秒前
12秒前
15秒前
17秒前
大大发布了新的文献求助10
17秒前
18秒前
7777发布了新的文献求助10
19秒前
priscilla发布了新的文献求助10
22秒前
Ruiruirui发布了新的文献求助10
23秒前
是龙龙呀发布了新的文献求助10
23秒前
西西发布了新的文献求助10
24秒前
Owen应助小柒采纳,获得10
26秒前
sniper111完成签到,获得积分10
28秒前
善学以致用应助Ruiruirui采纳,获得10
29秒前
翟大有完成签到 ,获得积分0
29秒前
35秒前
36秒前
38秒前
本站最权威用户完成签到,获得积分10
38秒前
达鸟啊完成签到,获得积分10
38秒前
牛牛发布了新的文献求助10
38秒前
九号球完成签到,获得积分10
41秒前
研友_LwlAgn发布了新的文献求助10
42秒前
来栖完成签到 ,获得积分10
45秒前
小超完成签到,获得积分10
48秒前
lza完成签到,获得积分20
49秒前
wei完成签到,获得积分10
51秒前
tzk发布了新的文献求助10
52秒前
lza发布了新的文献求助10
53秒前
54秒前
library2025完成签到,获得积分10
54秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380785
关于积分的说明 10515798
捐赠科研通 3100383
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821754
科研通“疑难数据库(出版商)”最低求助积分说明 772930