Identifying Leukemia-related Genes based on Time-series Dynamical Network by Integrating Differential Genes

基因 白血病 计算生物学 管家基因 基因调控网络 鉴定(生物学) 计算机科学 急性白血病 生物 生物信息学 遗传学 基因表达 植物
作者
Jin A,Ju Xiang,Xiangmao Meng,Yue Sheng,Hongling Peng,Min Li
出处
期刊:Genomics, Proteomics & Bioinformatics [Elsevier BV]
标识
DOI:10.1093/gpbjnl/qzaf037
摘要

Abstract Leukemia is a malignant disease of progressive accumulation characterized by high morbidity and mortality rates, and investigating its disease genes is crucial for understanding its etiology and pathogenesis. Network propagation methods have emerged and been widely employed in disease gene prediction, but most of them focus on static biological networks, which hinders their applicability and effectiveness in the study of progressive diseases. Moreover, there is currently a lack of special algorithms for the identification of leukemia disease genes. Here, we proposed DyNDG, a novel dynamic network-based model, which integrates differentially expressed genes to identify leukemia-related genes. Initially, we constructed a time-series dynamic network to model the development trajectory of leukemia. Then, we built a background–temporal multilayer network by integrating both the dynamic network and the static background network, which was initialized with differentially expressed genes at each stage. To quantify the associations between genes and leukemia, we extended a random walk process to the background–temporal multilayer network. The experimental results demonstrate that DyNDG achieves superior accuracy compared to several state-of-the-art methods. Moreover, after excluding housekeeping genes, DyNDG yields a set of promising candidate genes associated with leukemia progression or potential biomarkers, indicating the value of dynamic network information in identifying leukemia-related genes. The implementation of DyNDG is available at both https://ngdc.cncb.ac.cn/biocode/tool/BT7617 and https://github.com/CSUBioGroup/D yNDG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daijk完成签到,获得积分10
刚刚
4秒前
gxh完成签到,获得积分10
5秒前
Hus11221完成签到,获得积分10
6秒前
tt大耳朵完成签到,获得积分10
6秒前
6秒前
qiao应助DYDSA采纳,获得25
8秒前
笨笨忘幽发布了新的文献求助10
9秒前
落寞凌柏完成签到,获得积分10
10秒前
辣辣完成签到,获得积分10
10秒前
wqmdd发布了新的文献求助10
11秒前
晴天完成签到,获得积分10
11秒前
丘比特应助风趣的梦露采纳,获得10
11秒前
Brady6完成签到,获得积分10
12秒前
苗广山完成签到,获得积分10
16秒前
悠悠完成签到 ,获得积分10
16秒前
HEAUBOOK应助wqmdd采纳,获得10
16秒前
彭于晏应助笨笨忘幽采纳,获得30
17秒前
cmy完成签到,获得积分10
19秒前
独自受罪完成签到 ,获得积分10
19秒前
22秒前
呵呵哒发布了新的文献求助30
24秒前
逃离地球完成签到 ,获得积分10
25秒前
29秒前
蒋时晏应助高大凌寒采纳,获得200
32秒前
小摩尔完成签到 ,获得积分10
36秒前
任风完成签到,获得积分10
38秒前
小乐儿~完成签到,获得积分10
39秒前
华仔应助斯文的傲珊采纳,获得10
40秒前
香冢弃了残红完成签到,获得积分10
40秒前
yao chen完成签到,获得积分10
40秒前
妙手回春板蓝根完成签到,获得积分10
42秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
43秒前
不缺人YYDS完成签到,获得积分10
48秒前
223311完成签到,获得积分10
55秒前
传奇3应助mili采纳,获得10
56秒前
遗迹小白完成签到,获得积分10
58秒前
llllzzh完成签到 ,获得积分10
1分钟前
清修完成签到,获得积分10
1分钟前
接accept完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734