亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The adult ovary at single cell resolution: an expert review

医学 卵巢 分辨率(逻辑) 妇科 内科学 人工智能 计算机科学
作者
Ilmatar Rooda,Loren Méar,Jasmin Hassan,Pauliina Damdimopoulou
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:232 (4): S95.e1-S95.e16
标识
DOI:10.1016/j.ajog.2024.05.046
摘要

The ovaries play a crucial role in both the endocrine health and fertility of adult women. The fundamental functional units of the ovaries, primordial follicles, form during fetal development and constitute the ovarian reserve. Ovaries age prematurely in comparison to other organs, with the quality of oocytes declining steeply prior to the entire reserve becoming depleted, usually around age 50. Despite the pivotal role of ovaries in women's overall health, surprisingly little is known about the mechanisms controlling follicle dormancy, growth activation, atresia, maturation, and oocyte quality. Understanding ovarian function on a cellular and molecular level is increasingly important for several reasons. First, the global trend of women delaying childbirth creates a growing population of patients wishing to conceive when the quality and quantity of their oocytes are already critically low. Second, conditions affecting the ovaries, such as polycystic ovary syndrome and endometriosis, are widespread, yet diagnosis and treatment still present challenges. Lastly, advancements in cancer therapies have increased the number of cancer survivors who contend with late complications affecting fertility and hormonal balance. Clearly, a better understanding of diseases, aging, and toxicity in ovaries is needed for the development of novel treatments, preventive therapies, and safer pharmaceuticals. Human ovaries are notoriously difficult to obtain for research due to their pivotal role in women's health, and the highly heterogeneous distribution of follicles within the tissue combined with monthly cyclical changes present further challenges. Single-cell profiling techniques are creating new opportunities, enabling the characterization of small amounts of tissue with unprecedented resolution. Here, we review the literature on single-cell characterization of adult, reproductive-age ovaries. The majority of the 46 identified studies have focused on oocytes discarded during assisted reproduction, with only a handful focusing on ovarian tissue. The overwhelming focus of the studies is on follicles and oocytes, although the somatic cell niche in the ovary undoubtedly plays an important role in endocrine function and follicle biology. Altogether, the studies reveal unexpected diversity and heterogeneity among ovarian somatic and germ cells, highlighting the prevailing knowledge gaps in basic ovarian biology. As the most common outcome for a follicle is atresia, it is possible that part of the cell diversity relates to the biology of follicles destined to degenerate. The absence of spatial coordinates in single-cell studies further complicates the interpretation of the roles and significance of the various reported cell clusters. Accomplishing a representative ovarian single-cell atlas will require merging these studies. However, direct comparisons are challenging due to nonuniform nomenclature, differing tissue sources, varying meta-data reporting, and lack of gold standards in technical approaches. Although these reports establish a single-cell draft of adult-fertile age human ovaries, more detailed metadata and better quality reporting will be essential for the development of a robust ovarian cell atlas in health and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
19秒前
xdc完成签到,获得积分10
25秒前
xmyang完成签到,获得积分10
26秒前
科研通AI5应助倪妮采纳,获得10
31秒前
万能图书馆应助抗原漂移采纳,获得10
50秒前
xinni完成签到 ,获得积分10
1分钟前
老迟到的友桃完成签到 ,获得积分10
1分钟前
1分钟前
倪妮发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
草木完成签到 ,获得积分20
3分钟前
QCB完成签到 ,获得积分10
3分钟前
12305014077完成签到 ,获得积分10
3分钟前
3分钟前
西伯利亚老母猪完成签到,获得积分10
3分钟前
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
4分钟前
抗原漂移发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
xiliyusheng发布了新的文献求助10
4分钟前
4分钟前
生动的书蕾完成签到,获得积分10
4分钟前
4分钟前
SciGPT应助RFlord采纳,获得10
5分钟前
5分钟前
深情安青应助xiliyusheng采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127551
求助须知:如何正确求助?哪些是违规求助? 4330548
关于积分的说明 13493426
捐赠科研通 4166206
什么是DOI,文献DOI怎么找? 2283821
邀请新用户注册赠送积分活动 1284846
关于科研通互助平台的介绍 1224934