Early diagnosis model of mycosis fungoides and five inflammatory skin diseases based on multi-modal data-based convolutional neural network

蕈样真菌病 卷积神经网络 医学 皮肤病科 人工智能 深度学习 疾病 模式识别(心理学) 病理 淋巴瘤 计算机科学
作者
Zhaorui Liu,Yilan Zhang,Eric Ke Wang,Fengying Xie,Jie Liu
出处
期刊:British Journal of Dermatology [Oxford University Press]
标识
DOI:10.1093/bjd/ljaf212
摘要

Abstract Background Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma, and early-stage MF is difficult to differentiate from erythematous inflammatory disease. Except biopsy, non-invasive information such as patient’s basic information, clinical images and dermoscopic images is of great significance for early diagnosis of MF. However, there is still a lack of diagnosis models based on convolutional neural network that can utilize the above multimodal information. Objectives We aim to develop an artificial intelligence (AI) deep learning model based on multimodal information, verify its classification efficiency, and construct an AI-aided early diagnostic model of MF and inflammatory skin diseases for dermatologists. Methods This is a single center retrospective study based on multimodal information including clinical information, clinical images, and dermoscopic images. A total of 1157 cases of MF and inflammatory diseases were collected, including 2452 clinical images, 6550 dermoscopic images and corresponding clinical data. RegNetY-400MF was selected as the feature extractors in the study. Results AI model demonstrates higher levels of total accuracy, precision, sensitivity, and specificity in classification of MF and other inflammatory skin diseases compared to the participating dermatologists. A significant enhancement was noticed in average accuracy, sensitivity, and specificity for MF and inflammatory diseases within the Doctor+AI group, with values of 82.94%, 86.16%, and 96.45% respectively, compared to 71.52%, 74.56%, and 94.06% within the Doctor-only group. The more accurately diagnosis of each disease was also achieved by the multi-classification model. Conclusions These results indicate that our AI model has a significantly strong discriminative ability to assist doctors in improving diagnostic accuracy of early-stage MF and common inflammatory skin diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助兮颜采纳,获得10
刚刚
刚刚
镇淇张发布了新的文献求助10
1秒前
tracy完成签到,获得积分10
1秒前
星辰完成签到,获得积分10
1秒前
YY再摆烂完成签到,获得积分10
1秒前
1秒前
2秒前
Orange应助果果采纳,获得30
2秒前
2秒前
2秒前
zzzzzzzzzzzz完成签到,获得积分10
2秒前
3秒前
轻松青荷完成签到,获得积分10
3秒前
直率的宛海完成签到,获得积分10
3秒前
4秒前
Sublimation发布了新的文献求助10
4秒前
二水完成签到,获得积分10
4秒前
子车茗应助科研通管家采纳,获得20
5秒前
Xiang发布了新的文献求助10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
勤恳绝施发布了新的文献求助10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
小宇完成签到,获得积分20
5秒前
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
在水一方应助科研通管家采纳,获得30
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067678
求助须知:如何正确求助?哪些是违规求助? 4289466
关于积分的说明 13363694
捐赠科研通 4109142
什么是DOI,文献DOI怎么找? 2250109
邀请新用户注册赠送积分活动 1255509
关于科研通互助平台的介绍 1188024