Early diagnosis model of mycosis fungoides and five inflammatory skin diseases based on a multimodal data-based convolutional neural network

蕈样真菌病 卷积神经网络 医学 皮肤病科 人工智能 深度学习 疾病 模式识别(心理学) 病理 淋巴瘤 计算机科学
作者
Zhaorui Liu,Yilan Zhang,Eric Ke Wang,Fengying Xie,Jie Liu
出处
期刊:British Journal of Dermatology [Wiley]
卷期号:193 (5): 968-977 被引量:5
标识
DOI:10.1093/bjd/ljaf212
摘要

Abstract Background Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma, and early-stage MF is difficult to differentiate from erythematous inflammatory disease. With the exception of biopsy, noninvasive information such as a patient’s medical history and clinical and dermoscopic images is of great significance for early diagnosis of MF. However, there is a lack of diagnostic models based on convolutional neural networks that can use multimodal information. Objectives To develop an artificial intelligence (AI) deep learning model based on multimodal information, to verify its classification efficiency and to construct an AI-aided early diagnostic model of MF and inflammatory skin diseases for dermatologists. Methods This was a single-centre retrospective study based on multimodal information, including clinical information, clinical images and dermoscopic images. A total of 1157 cases of MF and inflammatory diseases were collected, including 2452 clinical images, 6550 dermoscopic images and corresponding clinical data. To assess the practicality of using AI models to help with clinical diagnoses, we carried out a comparative study involving three distinct groups: (i) dermatologists, (ii) the AI model and (iii) dermatologists + AI model. The dermatologist group comprised 23 dermatologists with a certain level of expertise and more than 10 h of systematic dermoscopy training. We used RegNetY400MF as the backbone network to extract features from the dermoscopic and clinical images. Results The AI model demonstrated higher levels of total accuracy, precision, sensitivity and specificity in the classification of MF and other inflammatory skin diseases than participating dermatologists. A significant enhancement was noticed in the average accuracy, sensitivity and specificity for MF and inflammatory diseases in the ‘dermatologist + AI’ group, with values of 82.9%, 86.2% and 96.5%, respectively, compared with 71.5%, 74.6% and 94.1%, respectively, in the ‘dermatologist-only’ group. A more accurate diagnosis of each disease was also achieved by the multiclassification model. Conclusions The results indicate that our AI model has a significantly strong discriminative ability to assist dermatologists with improving diagnostic accuracy in early-stage MF and common inflammatory skin diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿撕匹林完成签到,获得积分10
刚刚
017完成签到 ,获得积分10
1秒前
饼饼完成签到 ,获得积分10
1秒前
SnnerX发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
周财全发布了新的文献求助10
2秒前
彭于晏应助羞涩的渊思采纳,获得10
3秒前
3秒前
Aiden发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
家若完成签到 ,获得积分10
5秒前
苏荷完成签到 ,获得积分10
5秒前
咖啡质感完成签到 ,获得积分10
6秒前
orang完成签到,获得积分10
6秒前
6秒前
科目三应助李春生采纳,获得10
7秒前
7秒前
许陈静完成签到,获得积分10
7秒前
Ava应助Xiaopan采纳,获得10
7秒前
想吃颗糖发布了新的文献求助10
8秒前
8秒前
慕青应助柔弱的绮菱采纳,获得10
10秒前
10秒前
搜集达人应助ly采纳,获得10
11秒前
Akim应助追寻紫安采纳,获得10
11秒前
无限的雁芙完成签到 ,获得积分10
12秒前
小快乐完成签到,获得积分10
14秒前
机灵寒烟发布了新的文献求助10
15秒前
独特苡完成签到,获得积分10
15秒前
隐形曼青应助青阳采纳,获得100
15秒前
16秒前
sterlingwang完成签到,获得积分20
16秒前
17秒前
老实的百招完成签到,获得积分10
17秒前
18秒前
李健应助Aiden采纳,获得10
19秒前
19秒前
内向忆南完成签到,获得积分10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703475
求助须知:如何正确求助?哪些是违规求助? 5152756
关于积分的说明 15239872
捐赠科研通 4857914
什么是DOI,文献DOI怎么找? 2606793
邀请新用户注册赠送积分活动 1557914
关于科研通互助平台的介绍 1515752