已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early diagnosis model of mycosis fungoides and five inflammatory skin diseases based on multi-modal data-based convolutional neural network

蕈样真菌病 卷积神经网络 医学 皮肤病科 人工智能 深度学习 疾病 模式识别(心理学) 病理 淋巴瘤 计算机科学
作者
Zhaorui Liu,Yilan Zhang,Eric Ke Wang,Fengying Xie,Jie Liu
出处
期刊:British Journal of Dermatology [Oxford University Press]
标识
DOI:10.1093/bjd/ljaf212
摘要

Abstract Background Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma, and early-stage MF is difficult to differentiate from erythematous inflammatory disease. Except biopsy, non-invasive information such as patient’s basic information, clinical images and dermoscopic images is of great significance for early diagnosis of MF. However, there is still a lack of diagnosis models based on convolutional neural network that can utilize the above multimodal information. Objectives We aim to develop an artificial intelligence (AI) deep learning model based on multimodal information, verify its classification efficiency, and construct an AI-aided early diagnostic model of MF and inflammatory skin diseases for dermatologists. Methods This is a single center retrospective study based on multimodal information including clinical information, clinical images, and dermoscopic images. A total of 1157 cases of MF and inflammatory diseases were collected, including 2452 clinical images, 6550 dermoscopic images and corresponding clinical data. RegNetY-400MF was selected as the feature extractors in the study. Results AI model demonstrates higher levels of total accuracy, precision, sensitivity, and specificity in classification of MF and other inflammatory skin diseases compared to the participating dermatologists. A significant enhancement was noticed in average accuracy, sensitivity, and specificity for MF and inflammatory diseases within the Doctor+AI group, with values of 82.94%, 86.16%, and 96.45% respectively, compared to 71.52%, 74.56%, and 94.06% within the Doctor-only group. The more accurately diagnosis of each disease was also achieved by the multi-classification model. Conclusions These results indicate that our AI model has a significantly strong discriminative ability to assist doctors in improving diagnostic accuracy of early-stage MF and common inflammatory skin diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野过客完成签到 ,获得积分10
4秒前
我是老大应助二中所长采纳,获得10
5秒前
abc完成签到 ,获得积分10
6秒前
9秒前
14秒前
Blossom完成签到,获得积分10
14秒前
15秒前
ww发布了新的文献求助20
15秒前
18秒前
19秒前
懒大王完成签到 ,获得积分10
19秒前
坚强的纸飞机完成签到,获得积分10
20秒前
20秒前
23秒前
阿离发布了新的文献求助10
24秒前
wds发布了新的文献求助10
24秒前
一二一发布了新的文献求助10
25秒前
要多喝水完成签到 ,获得积分10
25秒前
boshi完成签到,获得积分10
27秒前
30秒前
aldehyde应助七街采纳,获得50
30秒前
苏信怜完成签到,获得积分10
34秒前
35秒前
37秒前
堂堂发布了新的文献求助10
41秒前
FashionBoy应助rpe采纳,获得10
42秒前
甜甜绮烟发布了新的文献求助30
43秒前
一二一完成签到,获得积分10
44秒前
独特纸飞机完成签到 ,获得积分10
47秒前
month发布了新的文献求助10
47秒前
49秒前
49秒前
50秒前
司空勒发布了新的文献求助10
52秒前
54秒前
55秒前
56秒前
57秒前
SciGPT应助司空勒采纳,获得10
1分钟前
AAA建材批发原哥完成签到,获得积分10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897652
求助须知:如何正确求助?哪些是违规求助? 3441729
关于积分的说明 10822878
捐赠科研通 3166666
什么是DOI,文献DOI怎么找? 1749487
邀请新用户注册赠送积分活动 845355
科研通“疑难数据库(出版商)”最低求助积分说明 788656