SSL-DA: Semi-and Self-Supervised Learning with Dual Attention for Echocardiogram Segmentation

对偶(语法数字) 分割 计算机科学 人工智能 艺术 文学类
作者
Lin Lv,Xing Han,Zhihong Sun,Zhaoguang Li,Xiuying Wang,Tong Jiang,Yiren Liu,Tianshu Li,Jingjing Xu,Liangzhen You,Guihua Yao,Sun Feng-rong,Jianping Xing
标识
DOI:10.1007/s10278-025-01532-4
摘要

Echocardiogram analysis plays a crucial role in assessing and diagnosing cardiac function, providing essential data to support medical diagnoses of heart disease. A key task, accurately identifying and segmenting the left ventricle (LV) in echocardiograms, remains challenging and labor-intensive. Current automated cardiac segmentation methods often lack the necessary accuracy and reproducibility, while semi-automated or manual annotations are excessively time-consuming. To address these limitations, we propose a novel segmentation framework, semi-and self-supervised learning with dual attention (SSL-DA) for echocardiogram segmentation. We start with a temporal masking network for pre-training. This network captures valuable information, such as echocardiogram periodicity. It also provides optimized initialization parameters for LV segmentation. We then employ a semi-supervised network to automatically segment the left ventricle, enhancing the model's learning with channel and spatial attention mechanisms to capture global channel dependencies and spatial dependencies across annotations. We evaluated SSL-DA on the publicly available EchoNet-Dynamic dataset, achieving a Dice similarity coefficient of 93.34% (95% CI, 93.23-93.46%), outperforming most prior CNN-based models. To further assess the generalization ability of SSL-DA, we conducted ablation experiments on the CAMUS dataset. Experimental results confirm that SSL-DA can quickly and accurately segment the left ventricle in echocardiograms, showing its potential for robust clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwp发布了新的文献求助20
2秒前
深情安青应助yuchangkun采纳,获得10
2秒前
3秒前
lc1342完成签到,获得积分10
4秒前
4秒前
正直纸鹤完成签到,获得积分10
6秒前
小唐完成签到,获得积分10
6秒前
汉堡包应助高高问柳采纳,获得10
6秒前
7秒前
7秒前
7秒前
科研通AI5应助跳跃的发夹采纳,获得10
8秒前
yuchangkun完成签到,获得积分10
8秒前
9秒前
昏睡的蟠桃应助DumBell采纳,获得20
9秒前
liming完成签到,获得积分10
9秒前
9秒前
10秒前
正直纸鹤发布了新的文献求助10
10秒前
kaiki发布了新的文献求助10
10秒前
wood发布了新的文献求助10
12秒前
13秒前
LIU完成签到,获得积分10
13秒前
asdaas发布了新的文献求助10
14秒前
14秒前
妮儿完成签到,获得积分10
15秒前
满意的西牛完成签到,获得积分10
15秒前
英俊鼠标完成签到 ,获得积分10
16秒前
xwx完成签到,获得积分10
16秒前
16秒前
大个应助banban采纳,获得10
18秒前
18秒前
科研通AI2S应助甜美的秋尽采纳,获得10
20秒前
夜云完成签到,获得积分10
21秒前
21秒前
深情安青应助25号底片采纳,获得10
21秒前
22秒前
SciGPT应助灵巧的导师采纳,获得30
22秒前
难过的箴完成签到 ,获得积分10
23秒前
安详的语蕊完成签到,获得积分10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846335
求助须知:如何正确求助?哪些是违规求助? 3388772
关于积分的说明 10554115
捐赠科研通 3109209
什么是DOI,文献DOI怎么找? 1713517
邀请新用户注册赠送积分活动 824761
科研通“疑难数据库(出版商)”最低求助积分说明 775065