已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HECLCDA:CircRNA-Drug Sensitivity Prediction via Heterogeneous Cross-Scale Contrastive Learning

作者
Jinmiao Song,Bin Xu,Lei Deng,Qimeng Yang,Qiguo Dai,Shengwei Tian
标识
DOI:10.1109/tcbbio.2025.3644695
摘要

Circular RNA (circRNA) is a widely distributed class of non-coding RNA molecules that have been shown to play a significant role in cancer development and drug resistance, significantly influencing cellular sensitivity to therapeutic drugs and treatment outcomes. However, traditional biomedical experimental methods are limited by low efficiency and high costs when verifying the association between circular RNA and drug sensitivity. Therefore, developing an efficient and accurate computational method to predict new associations between circRNA and drug sensitivity has become an urgent need in current research. To address this, this study proposes HECLCDA, a novel method based on heterogeneous cross-scale contrastive learning. To construct a comprehensive initial information base for drugs and circRNAs, circRNA gene sequence similarity, drug structural inclusion similarity (SIS), and Gaussian kernel similarity were integrated. Based on the integrated and complete known information of circRNAs and drugs, a heterogeneous graph was built. The model used the Heterogeneous Graph Transformer to extract heterogeneous network topological information, effectively distinguishing the heterogeneity of nodes and edges. The model broke through the information relationship between node attributes and network topology at two scales, and innovatively introduced a cross-scale contrastive learning mechanism in a sparse labeling scenario. Using self-supervised signals, we aimed to enhance the discriminative power of node embeddings and maximize the mutual information between paired nodes at different scales. Cross-validation experiments demonstrated that HECLCDA performs excellently on real data and can efficiently predict drug sensitivity. Additionally, case studies further validate the model's effectiveness in predicting potential circRNA-drug sensitivity associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助感动凡雁采纳,获得10
3秒前
4秒前
4秒前
4秒前
小马甲应助王一一采纳,获得20
5秒前
5秒前
外向雁梅发布了新的文献求助10
5秒前
自信尔竹完成签到,获得积分10
7秒前
别看了完成签到,获得积分10
7秒前
年年发布了新的文献求助10
9秒前
che发布了新的文献求助10
10秒前
Jessica发布了新的文献求助10
11秒前
Lucas应助啊啊啊采纳,获得10
12秒前
我爱吃糯米团子完成签到,获得积分10
12秒前
充电宝应助ernest采纳,获得30
13秒前
rex完成签到,获得积分10
13秒前
14秒前
keep完成签到 ,获得积分10
14秒前
15秒前
左贵辉完成签到,获得积分20
16秒前
大个应助年年采纳,获得10
17秒前
harry完成签到,获得积分10
17秒前
heal发布了新的文献求助10
18秒前
18秒前
19秒前
ernest发布了新的文献求助30
19秒前
20秒前
harry发布了新的文献求助10
20秒前
领导范儿应助lee采纳,获得10
20秒前
20秒前
细腻的谷丝完成签到 ,获得积分20
20秒前
23秒前
24秒前
啊啊啊发布了新的文献求助10
24秒前
极速小鱼发布了新的文献求助10
24秒前
啦啦啦啦发布了新的文献求助10
24秒前
Orange应助灵巧电灯胆采纳,获得10
25秒前
田様应助悲凉的菠萝采纳,获得10
26秒前
zrn完成签到 ,获得积分10
26秒前
123发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722