A Semantic Transferred Priori for Hyperspectral Target Detection With Spatial–Spectral Association

高光谱成像 人工智能 计算机科学 模式识别(心理学) 目标检测 假警报 像素 先验与后验 计算机视觉 分割 全光谱成像 恒虚警率 特征提取 VNIR公司 哲学 认识论
作者
Jie Lei,Simin Xu,Weiying Xie,Jiaqing Zhang,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:8
标识
DOI:10.1109/tgrs.2023.3261302
摘要

Hyperspectral target detection is a crucial application that encompasses military, environmental, and civil needs. Target detection algorithms that have prior knowledge often assume a fixed laboratory target spectrum, which can differ significantly from the test image in the scene. This discrepancy can be attributed to various factors such as atmospheric conditions and sensor internal effects, resulting in decreased detection accuracy. To address this challenge, this article introduces a novel method for detecting hyperspectral image (HSI) targets with certain spatial information, referred to as the semantic transferred priori for hyperspectral target Detection with Spatial-Spectral Association (SSAD). Considering that the spatial textures of the HSI remain relatively constant compared to the spectral features, we propose to extract a unique and precise target spectrum from each image data via target detection in its spatial domain. Specifically, employing transfer learning, we designed a semantic segmentation network adapted for HSIs to discriminate the spatial areas of targets, and then aggregated a customized target spectrum with those spectral pixels localized. With the extracted target spectrum, spectral dimensional target detection is performed subsequently by the CEM detector. The final detection results are obtained by combining an Attention Generator Module (AGM) to aggregate target features, and Deep Stacked Feature Fusion (DSFF) module to hierarchically reduce false alarm rate. Experiments demonstrate that our proposed method achieves higher detection accuracy and superior visual performance compared to the other benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanglin发布了新的文献求助10
刚刚
FashionBoy应助mmw采纳,获得30
2秒前
KKKK发布了新的文献求助10
2秒前
2秒前
白菜完成签到,获得积分10
4秒前
顺心迎南发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
ff完成签到 ,获得积分10
7秒前
YAYA完成签到,获得积分10
7秒前
9秒前
www完成签到,获得积分10
9秒前
怡然铃铛发布了新的文献求助10
10秒前
woclcom发布了新的文献求助10
11秒前
Orange应助顺心迎南采纳,获得10
12秒前
Akim应助云鲲采纳,获得20
12秒前
凡人完成签到,获得积分10
12秒前
13秒前
顺心的妙晴完成签到,获得积分10
13秒前
frank应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
zho应助科研通管家采纳,获得20
14秒前
思源应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
科研小白发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
15秒前
科研通AI5应助hyl采纳,获得10
16秒前
KKKK完成签到,获得积分10
16秒前
18秒前
mmw完成签到,获得积分20
19秒前
19秒前
无花果应助汤浩宏采纳,获得10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100 m sprint in collegiate male sprinters 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826843
求助须知:如何正确求助?哪些是违规求助? 3369113
关于积分的说明 10454281
捐赠科研通 3088663
什么是DOI,文献DOI怎么找? 1699351
邀请新用户注册赠送积分活动 817289
科研通“疑难数据库(出版商)”最低求助积分说明 770157