Performance of Machine Learning in Diagnosing KRAS (Kirsten Rat Sarcoma) Mutations in Colorectal Cancer: Systematic Review and Meta-Analysis.

克拉斯 结直肠癌 荟萃分析 医学 肿瘤科 癌症 内科学 生物信息学 生物
作者
Kaixin Chen,Yin Qu,Ye Han,Yan Li,Huiyan Gao,De Zheng
出处
期刊:PubMed 卷期号:27: e73528-e73528
标识
DOI:10.2196/73528
摘要

With the widespread application of machine learning (ML) in the diagnosis and treatment of colorectal cancer (CRC), some studies have investigated the use of ML techniques for the diagnosis of KRAS (Kirsten rat sarcoma) mutation. Nevertheless, there is scarce evidence from evidence-based medicine to substantiate its efficacy. Our study was carried out to systematically review the performance of ML models developed using different modeling approaches, in diagnosing KRAS mutations in CRC. We aim to offer evidence-based foundations for the development and enhancement of future intelligent diagnostic tools. PubMed, Cochrane Library, Embase, and Web of Science were systematically retrieved, with the search cutoff date set to December 22, 2024. The encompassed studies are publicly published research papers that use ML to diagnose KRAS gene mutations in CRC. The risk of bias in the encompassed models was evaluated via the PROBAST (Prediction Model Risk of Bias Assessment Tool). A meta-analysis of the model's concordance index (c-index) was performed, and a bivariate mixed-effects model was used to summarize sensitivity and specificity based on diagnostic contingency tables. A total of 43 studies involving 10,888 patients were included. The modeling variables were derived from clinical characteristics, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography, and pathological histology. In the validation cohort, for the ML model developed based on CT radiomic features, the c-index, sensitivity, and specificity were 0.87 (95% CI 0.84-0.90), 0.85 (95% CI 0.80-0.89), and 0.83 (95% CI 0.73-0.89), respectively. For the model developed using MRI radiomic features, the c-index, sensitivity, and specificity were 0.77 (95% CI 0.71-0.83), 0.78 (95% CI 0.72-0.83), and 0.73 (95% CI 0.63-0.81), respectively. For the ML model developed based on positron emission tomography/computed tomography radiomic features, the c-index, sensitivity, and specificity were 0.84 (95% CI 0.77-0.90), 0.73, and 0.83, respectively. Notably, the deep learning (DL) model based on pathological images demonstrated a c-index, sensitivity, and specificity of 0.96 (95% CI 0.94-0.98), 0.83 (95% CI 0.72-0.91), and 0.87 (95% CI 0.77-0.92), respectively. The DL model MRI-based model showed a c-index of 0.93 (95% CI 0.90-0.96), sensitivity of 0.85 (95% CI 0.75-0.91), and specificity of 0.83 (95% CI 0.77-0.88). ML is highly accurate in diagnosing KRAS mutations in CRC, and DL models based on MRI and pathological images exhibit particularly strong diagnosis accuracy. More broadly applicable DL-based diagnostic tools may be developed in the future. However, the clinical application of DL models remains relatively limited at present. Therefore, future research should focus on increasing sample sizes, improving model architectures, and developing more advanced DL models to facilitate the creation of highly efficient intelligent diagnostic tools for KRAS mutation diagnosis in CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sidegate发布了新的文献求助10
刚刚
2秒前
所所应助伍思光采纳,获得10
2秒前
江屿发布了新的文献求助10
2秒前
Yuejun完成签到,获得积分10
3秒前
不睡觉的看完成签到,获得积分10
3秒前
hyhy完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
G.Huang完成签到,获得积分10
9秒前
10秒前
小马甲应助窝窝头采纳,获得10
11秒前
李健应助巴拉巴拉采纳,获得10
12秒前
12秒前
我是大王关注了科研通微信公众号
15秒前
酷波er应助N型半导体采纳,获得10
16秒前
智博36完成签到,获得积分10
17秒前
哔哔话发布了新的文献求助10
17秒前
GCXH发布了新的文献求助10
18秒前
认真烤鸡关注了科研通微信公众号
19秒前
舒克和贝塔完成签到,获得积分10
21秒前
巴拉巴拉完成签到,获得积分20
22秒前
火星上含芙完成签到 ,获得积分10
23秒前
梅残风暖发布了新的文献求助10
23秒前
GCXH完成签到,获得积分10
26秒前
哇呀呀完成签到 ,获得积分10
26秒前
28秒前
科研通AI5应助魔幻安筠采纳,获得10
32秒前
8029发布了新的文献求助10
33秒前
梅残风暖完成签到,获得积分10
33秒前
零几年发布了新的文献求助10
34秒前
研友_Z30Kz8完成签到,获得积分10
34秒前
鹿友绿完成签到,获得积分10
36秒前
呐呐完成签到,获得积分10
37秒前
39秒前
tcmlida完成签到,获得积分10
39秒前
夜夜完成签到,获得积分10
39秒前
派大星完成签到,获得积分10
40秒前
emmaq完成签到,获得积分10
40秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110160
求助须知:如何正确求助?哪些是违规求助? 3648426
关于积分的说明 11556558
捐赠科研通 3354056
什么是DOI,文献DOI怎么找? 1842727
邀请新用户注册赠送积分活动 908916
科研通“疑难数据库(出版商)”最低求助积分说明 825842