Fully Unsupervised Anomaly Detection in Industrial Images with Unknown Data Contamination

异常检测 污染 计算机科学 人工智能 异常(物理) 模式识别(心理学) 计算机视觉 数据挖掘 生态学 凝聚态物理 生物 物理
作者
Matthias Wüest,Lilach Goren Huber
标识
DOI:10.1109/sds66131.2025.00013
摘要

AI algorithms for the automatic detection of unusual or abnormal patterns in image data have become increasingly important in industrial quality inspection, improving product quality and operational efficiency. Most state-of-the-art Image Anomaly Detection (IAD) methods are based on unsupervised approaches, learning normal patterns from anomaly-free training data. However, in real-world applications the assumption of anomaly-free training data is often unrealistic, as labeling anomalies in the historical data can be expensive, error-prone, or even impossible. Anomalies contaminating the training data typically lead to a degraded anomaly detection (AD) performance at deployment, yet this issue remains largely overlooked in research. Some studies have attempted to mitigate this challenge through data refinement methods. However, these approaches often require prior knowledge of the anomaly ratio (AR) in the training data, which is rarely available in practice. In this paper, we introduce Overlapping Subsets Data Refinement (OSDR), a simple, fully unsupervised, and model-agnostic refinement framework designed to address image anomaly detection (IAD) under data contamination with no prior assumptions about the AR. OSDR assigns a refinement score to each training sample using an ensemble of models trained on partially overlapping data subsets, followed by robust anomaly removal through an adaptive thresholding technique. Evaluations on two widely used industrial image datasets demonstrate that OSDR effectively restores performance losses caused by contamination and outperforms existing refinement frameworks. Our approach provides a flexible, practical, and easy-to-deploy solution for IAD in real-world settings, where data contamination or mislabeling is often inevitable and the anomaly ratio is unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rei完成签到,获得积分10
刚刚
1秒前
9391完成签到,获得积分10
1秒前
1秒前
瓜瓜完成签到,获得积分10
1秒前
乐乐应助曹博采纳,获得20
1秒前
务实路灯完成签到,获得积分10
2秒前
Lyy发布了新的文献求助10
2秒前
王旋烦着呢完成签到,获得积分10
2秒前
wen关闭了wen文献求助
3秒前
myx发布了新的文献求助10
3秒前
彭于晏应助huyanan采纳,获得30
3秒前
丘比特应助星星星星采纳,获得10
3秒前
科研小白完成签到,获得积分10
3秒前
热心的善愁完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
YE发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
嘿嘿发布了新的文献求助10
5秒前
6秒前
钱来完成签到,获得积分10
6秒前
河鱼心完成签到,获得积分20
6秒前
6秒前
常泽洋122完成签到,获得积分10
6秒前
6秒前
Freya发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
星辰大海应助远山采纳,获得10
7秒前
chen发布了新的文献求助10
7秒前
Bloomy完成签到,获得积分10
8秒前
董大米发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490