已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generative Causality-driven Network for Graph Multi-task Learning

计算机科学 人工智能 生成语法 因果关系(物理学) 任务(项目管理) 机器学习 图形 图论 模式识别(心理学) 理论计算机科学 数学 量子力学 组合数学 物理 经济 管理
作者
Xixun Lin,Qìng Yu,Yanan Cao,Lixin Zou,Chuan Zhou,Jia Wu,Chenliang Li,Peng Zhang,Shirui Pan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tpami.2025.3610096
摘要

Multi-task learning (MTL) is a standard learning paradigm in machine learning. The central idea of MTL is to capture the shared knowledge among multiple tasks for mitigating the problem of data sparsity where the annotated samples for each task are quite limited. Recent studies indicate that graph multi-task learning (GMTL) yields the promising improvement over previous MTL methods. GMTL represents tasks on a task relation graph, and further leverages graph neural networks (GNNs) to learn complex task relationships. Although GMTL achieves the better performance, the construction of task relation graph heavily depends on simple heuristic tricks, which results in the existence of spurious task correlations and the absence of true edges between tasks with strong connections. This problem largely limits the effectiveness of GMTL. To this end, we propose the Generative Causality-driven Network (GCNet), a novel framework that progressively learns the causal structure between tasks to discover which tasks are beneficial to be jointly trained for improving generalization ability and model robustness. To be specific, in the feature space, GCNet first introduces a feature-level generator to generate the structure prior for reducing learning difficulty. Afterwards, GCNet develops a output-level generator which is parameterized as a new causal energy-based model (EBM) to refine the learned structure prior in the output space driven by causality. Benefiting from our proposed causal framework, we theoretically derive an intervention contrastive estimation for training this causal EBM efficiently. Experiments are conducted on multiple synthetic and real-world datasets. Extensive empirical results and model analyses demonstrate the superior performance of GCNet over several competitive MTL baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助蓦然回首采纳,获得10
2秒前
小衫生发布了新的文献求助10
4秒前
呆呆cherry发布了新的文献求助10
4秒前
CCsouljump完成签到 ,获得积分10
5秒前
无花果应助啊蹲不蹲采纳,获得10
5秒前
清脆饼干发布了新的文献求助10
5秒前
5秒前
FashionBoy应助wise111采纳,获得10
6秒前
Panpp完成签到,获得积分10
7秒前
wanci应助谨慎的小蕊采纳,获得10
8秒前
9秒前
Bressanone发布了新的文献求助30
10秒前
汪旺完成签到 ,获得积分10
11秒前
呆萌羊青发布了新的文献求助10
11秒前
12秒前
12秒前
yty发布了新的文献求助10
12秒前
13秒前
13秒前
啊蹲不蹲完成签到,获得积分20
14秒前
16秒前
1234发布了新的文献求助10
16秒前
17秒前
个性的绮彤完成签到,获得积分10
17秒前
18秒前
啊蹲不蹲发布了新的文献求助10
18秒前
19秒前
无奈的迎丝完成签到,获得积分10
20秒前
ding应助平淡惋清采纳,获得10
21秒前
22秒前
Eva发布了新的文献求助10
22秒前
yzk发布了新的文献求助10
22秒前
积极的玉米完成签到,获得积分20
22秒前
23秒前
呆萌羊青完成签到,获得积分10
23秒前
上官若男应助西门灵薇采纳,获得100
23秒前
希望天下0贩的0应助Dylan采纳,获得10
23秒前
wise111发布了新的文献求助10
24秒前
25秒前
蜡笔完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290304
求助须知:如何正确求助?哪些是违规求助? 4441692
关于积分的说明 13827995
捐赠科研通 4324297
什么是DOI,文献DOI怎么找? 2373618
邀请新用户注册赠送积分活动 1368975
关于科研通互助平台的介绍 1332950