已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FutureX: An Advanced Live Benchmark for LLM Agents in Future Prediction

作者
Zhiyuan Zeng,Jiashuo Liu,Siyuan Chen,Tianci He,Y. P. Liao,Yixiao Tian,Jinpeng Wang,Z. Wang,Xiaojiang Peng,Lihong Yin,M. Yin,Zhenwei Zhu,Tingting Cai,Ze-hui Chen,Jiecao Chen,Yantao Du,Xiang Gao,J. Guo,Liang Hu,Jianpeng Jiao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2508.11987
摘要

Future prediction is a complex task for LLM agents, requiring a high level of analytical thinking, information gathering, contextual understanding, and decision-making under uncertainty. Agents must not only gather and interpret vast amounts of dynamic information but also integrate diverse data sources, weigh uncertainties, and adapt predictions based on emerging trends, just as human experts do in fields like politics, economics, and finance. Despite its importance, no large-scale benchmark exists for evaluating agents on future prediction, largely due to challenges in handling real-time updates and retrieving timely, accurate answers. To address this, we introduce $\textbf{FutureX}$, a dynamic and live evaluation benchmark specifically designed for LLM agents performing future prediction tasks. FutureX is the largest and most diverse live benchmark for future prediction, supporting real-time daily updates and eliminating data contamination through an automated pipeline for question gathering and answer collection. We evaluate 25 LLM/agent models, including those with reasoning, search capabilities, and integration of external tools such as the open-source Deep Research Agent and closed-source Deep Research models. This comprehensive evaluation assesses agents' adaptive reasoning and performance in dynamic environments. Additionally, we provide in-depth analyses of agents' failure modes and performance pitfalls in future-oriented tasks, including the vulnerability to fake web pages and the temporal validity. Our goal is to establish a dynamic, contamination-free evaluation standard that drives the development of LLM agents capable of performing at the level of professional human analysts in complex reasoning and predictive thinking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyaoyou完成签到,获得积分10
刚刚
刚刚
文欣完成签到 ,获得积分0
1秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
1秒前
研友_wZrxbL发布了新的文献求助50
1秒前
2秒前
希望天下0贩的0应助晓生采纳,获得10
3秒前
yyan完成签到 ,获得积分10
4秒前
戈屿完成签到 ,获得积分10
4秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
5秒前
隐形曼青应助开放千琴采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得20
11秒前
华仔应助科研通管家采纳,获得30
11秒前
11秒前
Ak完成签到,获得积分0
11秒前
16秒前
17秒前
小牛完成签到,获得积分10
19秒前
哇咔咔完成签到 ,获得积分10
19秒前
几两完成签到 ,获得积分10
20秒前
Fn完成签到 ,获得积分10
20秒前
枫丶完成签到 ,获得积分10
20秒前
20秒前
能干的雨完成签到 ,获得积分10
20秒前
DING完成签到,获得积分20
21秒前
虚心的惮完成签到 ,获得积分10
22秒前
22秒前
吕文涛完成签到,获得积分10
23秒前
23秒前
小牛发布了新的文献求助10
24秒前
鹿小新完成签到 ,获得积分0
26秒前
顾影完成签到 ,获得积分10
28秒前
29秒前
阔达静曼完成签到 ,获得积分10
29秒前
大大怪完成签到 ,获得积分10
29秒前
tjnksy完成签到,获得积分10
30秒前
xuxingxing完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159856
求助须知:如何正确求助?哪些是违规求助? 4354199
关于积分的说明 13557874
捐赠科研通 4198117
什么是DOI,文献DOI怎么找? 2302416
邀请新用户注册赠送积分活动 1302494
关于科研通互助平台的介绍 1247719