Improving protein-protein interaction prediction using protein language model and protein network features

蛋白质-蛋白质相互作用 计算机科学 化学 计算生物学 生物化学 生物
作者
Jun Hu,Zhe Li,B. Dharma Rao,Maha A. Thafar,Muhammad Arif
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:693: 115550-115550 被引量:7
标识
DOI:10.1016/j.ab.2024.115550
摘要

Interactions between proteins are ubiquitous in a wide variety of biological processes. Accurately identifying the protein-protein interaction (PPI) is of significant importance for understanding the mechanisms of protein functions and facilitating drug discovery. Although the wet-lab technological methods are the best way to identify PPI, their major constraints are their time-consuming nature, high cost, and labor-intensiveness. Hence, lots of efforts have been made towards developing computational methods to improve the performance of PPI prediction. In this study, we propose a novel hybrid computational method (called KSGPPI) that aims at improving the prediction performance of PPI via extracting the discriminative information from protein sequences and interaction networks. The KSGPPI model comprises two feature extraction modules. In the first feature extraction module, a large protein language model, ESM-2, is employed to exploit the global complex patterns concealed within protein sequences. Subsequently, feature representations are further extracted through CKSAAP, and a two-dimensional convolutional neural network (CNN) is utilized to capture local information. In the second feature extraction module, the query protein acquires its similar protein from the STRING database via the sequence alignment tool NW-align and then captures the graph embedding feature for the query protein in the protein interaction network of the similar protein using the algorithm of Node2vec. Finally, the features of these two feature extraction modules are efficiently fused; the fused features are then fed into the multilayer perceptron to predict PPI. The results of five-fold cross-validation on the used benchmarked datasets demonstrate that KSGPPI achieves an average prediction accuracy of 88.96 %. Additionally, the average Matthews correlation coefficient value (0.781) of KSGPPI is significantly higher than that of those state-of-the-art PPI prediction methods. The standalone package of KSGPPI is freely downloaded at https://github.com/rickleezhe/KSGPPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
归零儿发布了新的文献求助10
1秒前
研友_alan发布了新的文献求助10
1秒前
小二郎应助木昜采纳,获得10
1秒前
cccui完成签到,获得积分10
3秒前
素颜浅笑发布了新的文献求助10
3秒前
3秒前
4秒前
热心的皮发布了新的文献求助10
4秒前
怅望千秋完成签到 ,获得积分10
4秒前
zoey发布了新的文献求助10
4秒前
chenn完成签到 ,获得积分10
5秒前
Wang发布了新的文献求助10
5秒前
yangmiemie发布了新的文献求助10
7秒前
沉默曼文完成签到,获得积分10
8秒前
迪丽热巴发布了新的文献求助30
9秒前
10秒前
LELE完成签到 ,获得积分10
10秒前
英俊的铭应助sunzeyi采纳,获得10
10秒前
10秒前
大模型应助活泼的觅云采纳,获得10
11秒前
zhoumo完成签到,获得积分10
12秒前
英姑应助yangmiemie采纳,获得10
12秒前
13秒前
14秒前
14秒前
Ray发布了新的文献求助10
17秒前
一百度黑发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
22秒前
23秒前
yc发布了新的文献求助10
23秒前
lll发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802191
求助须知:如何正确求助?哪些是违规求助? 3347960
关于积分的说明 10335656
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807961
科研通“疑难数据库(出版商)”最低求助积分说明 763997