亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving protein-protein interaction prediction using protein language model and protein network features

蛋白质-蛋白质相互作用 计算机科学 化学 计算生物学 生物化学 生物
作者
Jun Hu,Zhe Li,B. Dharma Rao,Maha A. Thafar,Muhammad Arif
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:693: 115550-115550 被引量:7
标识
DOI:10.1016/j.ab.2024.115550
摘要

Interactions between proteins are ubiquitous in a wide variety of biological processes. Accurately identifying the protein-protein interaction (PPI) is of significant importance for understanding the mechanisms of protein functions and facilitating drug discovery. Although the wet-lab technological methods are the best way to identify PPI, their major constraints are their time-consuming nature, high cost, and labor-intensiveness. Hence, lots of efforts have been made towards developing computational methods to improve the performance of PPI prediction. In this study, we propose a novel hybrid computational method (called KSGPPI) that aims at improving the prediction performance of PPI via extracting the discriminative information from protein sequences and interaction networks. The KSGPPI model comprises two feature extraction modules. In the first feature extraction module, a large protein language model, ESM-2, is employed to exploit the global complex patterns concealed within protein sequences. Subsequently, feature representations are further extracted through CKSAAP, and a two-dimensional convolutional neural network (CNN) is utilized to capture local information. In the second feature extraction module, the query protein acquires its similar protein from the STRING database via the sequence alignment tool NW-align and then captures the graph embedding feature for the query protein in the protein interaction network of the similar protein using the algorithm of Node2vec. Finally, the features of these two feature extraction modules are efficiently fused; the fused features are then fed into the multilayer perceptron to predict PPI. The results of five-fold cross-validation on the used benchmarked datasets demonstrate that KSGPPI achieves an average prediction accuracy of 88.96 %. Additionally, the average Matthews correlation coefficient value (0.781) of KSGPPI is significantly higher than that of those state-of-the-art PPI prediction methods. The standalone package of KSGPPI is freely downloaded at https://github.com/rickleezhe/KSGPPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
顺利问玉完成签到 ,获得积分10
37秒前
冬去春来完成签到 ,获得积分10
1分钟前
1分钟前
Hazel发布了新的文献求助30
1分钟前
zxq完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
GPTea完成签到,获得积分0
2分钟前
专一的忆寒完成签到,获得积分10
3分钟前
3分钟前
MchemG完成签到,获得积分0
4分钟前
斯文败类应助zrm采纳,获得10
4分钟前
4分钟前
lwy发布了新的文献求助10
4分钟前
4分钟前
zrm发布了新的文献求助10
4分钟前
桐桐应助lwy采纳,获得10
4分钟前
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
GPTea应助科研通管家采纳,获得20
5分钟前
5分钟前
7分钟前
席江海完成签到,获得积分0
7分钟前
可耐的冰萍完成签到,获得积分10
7分钟前
GPTea应助科研通管家采纳,获得20
7分钟前
小西完成签到 ,获得积分10
8分钟前
8分钟前
酷波er应助Fu采纳,获得10
9分钟前
9分钟前
wukong完成签到,获得积分10
9分钟前
DPmmm发布了新的文献求助10
9分钟前
null应助科研通管家采纳,获得10
9分钟前
GPTea应助科研通管家采纳,获得20
9分钟前
今后应助狂奔弟弟采纳,获得10
9分钟前
10分钟前
狂奔弟弟发布了新的文献求助10
10分钟前
10分钟前
RunK发布了新的文献求助10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4695319
求助须知:如何正确求助?哪些是违规求助? 4065385
关于积分的说明 12568936
捐赠科研通 3764479
什么是DOI,文献DOI怎么找? 2079040
邀请新用户注册赠送积分活动 1107323
科研通“疑难数据库(出版商)”最低求助积分说明 985620