已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing seismic porosity estimation through 3D sequence-to-sequence deep learning with data augmentation, spatial constraints, and geologic constraints

序列(生物学) 地质学 多孔性 地震学 估计 岩土工程 工程类 遗传学 生物 系统工程
作者
Minghui Xu,Luanxiao Zhao,Jingyu Liu,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (4): M93-M108 被引量:2
标识
DOI:10.1190/geo2023-0614.1
摘要

Estimating porosity from seismic data is critical for studying underground rock properties, assessing energy reserves, and subsequent reservoir exploration and development. For reservoirs with strong heterogeneity, the endeavor to accurately and stably characterize spatial variations in porosity often encounters considerable challenges due to the rapid lateral changes in formations. In view of this, establishing a robust mapping relationship from seismic data to reservoir properties in 3D space is important in addressing this challenge. We transform the conventional 1D sequence-to-point (STP) prediction paradigm into a 3D sequence-to-sequence (STS) prediction paradigm to enable machine learning to extract 3D seismic data features. The 3D STS prediction presents valuable potential for enhancing the geologic continuity and vertical characterization ability of porosity compared to STP. Building upon the 3D STS prediction model, three strategies from different perspectives are introduced to further enhance the performance of seismic porosity estimation. First, we apply a translation-based data augmentation (DA) strategy to mitigate the problem of sparsely labeled data. Second, we develop spatial constraints (SCs) considering absolute coordinates and relative time to boost the spatial delineation of porosity. Third, to incorporate geologic insights into machine learning, we impose geologic constraints (GCs) by measuring the data distribution similarity between around-the-well predictions and well labels. Compared with DA strategies, incorporating SCs and GCs to STS yields more substantial improvements, which illustrates the importance of prior knowledge for physical parameter inversion. Finally, the combined application of these three strategies and the 3D STS method gives better generalization performance and geologic plausibility in the porosity prediction for investigated carbonate reservoirs, outperforming other methods and decreasing error by an average of 8% across 48 wells compared to STP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
温暖的纲发布了新的文献求助10
2秒前
浮游应助紫心采纳,获得10
2秒前
3秒前
syy发布了新的文献求助10
4秒前
橙橙完成签到,获得积分10
5秒前
张必雨完成签到,获得积分10
6秒前
蛋挞发布了新的文献求助10
6秒前
cornelia发布了新的文献求助10
6秒前
7秒前
8秒前
gkhsdvkb发布了新的文献求助10
8秒前
张必雨发布了新的文献求助10
8秒前
沅沅完成签到 ,获得积分10
9秒前
科目三应助叶子采纳,获得10
9秒前
9秒前
Akim应助阿鹏采纳,获得10
10秒前
七里香发布了新的文献求助30
12秒前
cokoy完成签到,获得积分10
12秒前
13秒前
15秒前
dajiejie发布了新的文献求助10
16秒前
18秒前
18秒前
20秒前
情怀应助和谐的飞瑶采纳,获得10
20秒前
科目三应助xuan采纳,获得30
20秒前
21秒前
星辰大海应助mingjiang采纳,获得10
21秒前
Lucas应助黄河采纳,获得10
21秒前
爆米花应助cornelia采纳,获得10
21秒前
七里香完成签到,获得积分10
22秒前
22秒前
22秒前
蛋挞发布了新的文献求助10
22秒前
22秒前
yeezy123发布了新的文献求助10
23秒前
23秒前
荆棘鸟发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322909
求助须知:如何正确求助?哪些是违规求助? 4464257
关于积分的说明 13892548
捐赠科研通 4355719
什么是DOI,文献DOI怎么找? 2392444
邀请新用户注册赠送积分活动 1386042
关于科研通互助平台的介绍 1355890