A physics-constrained data-driven workflow for predicting bottom hole pressure using a hybrid model of artificial neural network and particle swarm optimization

粒子群优化 人工神经网络 计算机科学 深孔钻探 人工智能 数据驱动 算法 数学优化 机器学习 钻探 工程类 数学 机械工程
作者
Zhaopeng Zhu,Zihao Liu,Xianzhi Song,Shuo Zhu,Mengmeng Zhou,Gensheng Li,Shiming Duan,Baodong Ma,Shanlin Ye,Rui Zhang
标识
DOI:10.1016/j.geoen.2023.211625
摘要

Accurate and efficient prediction of bottom hole pressure (BHP) is important for managed pressure drilling (MPD), which is essential to ensure the safety of drilling in complex formations with a narrow pore/fracture pressure envelope. Without idealized assumptions and iterative solutions, the data-driven machine learning model has higher prediction accuracy and efficiency than the mechanistic hydraulics model. However, the machine learning models suffering from the significant impact of noise data and the strict restriction of the data field, often leads to anomalous deviations. Physical constraints are inherent mappings between output values and characteristic variables, which can be applied to model training to improve the robustness of the model. In this study, wellbore flow mechanism is considered as the physical constraint, and a physics-constrained data-driven workflow is proposed for stable prediction of BHP, which is more consistent with the hydraulic mechanism. Firstly, more than 400,000 groups of field pressure data are extracted as the training dataset by an automatic identification method of drilling state. And twelve characteristic parameters of BHP were optimized, including inlet flow rate, outlet density and wellhead pressure. Embedding physical constraints into the loss function of artificial neural network (ANN) as penalty terms can induce ANN model output results within the wellbore flow mechanism. Finally, particle swarm algorithm is introduced to solve the weight and bias of ANN globally without the derivative of the restructuring loss function. The proposed model is verified based on the field pressure data. It could be found that both experiential and knowledge-based constraints can improve the accuracy and stability of the ANN model, the prediction error is significantly reduced, MRE, RMSE and MAE were respectively reduced to 0.46%, 0.34 MPa and 0.27 MPa. RMSE decreased by 20.9%, MRE and MAE decreased by 19.3% and 18.1%, respectively. Meanwhile, the R2 of the model reached 0.9871. Sensitive parameters such as flow rate have a more significant effect on the prediction accuracy of BHP, while non-sensitive parameters such as mud density can eliminate the abnormal deviation of BHP more effectively, and the constraints of multiple parameters can be superimposed. Therefore, optimizing the constraint combination according to the fluctuation characteristics of BHP is crucial to improve the accuracy and stability of the ANN model. This is an innovative exploration of the physical constraints on the data-driven model of BHP, which can provide accurate and efficient references for managed pressure drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Akim应助12采纳,获得10
2秒前
Hover发布了新的文献求助10
2秒前
等下完这场雨完成签到,获得积分10
2秒前
木头马尾发布了新的文献求助20
3秒前
机灵柚子应助ylq采纳,获得10
4秒前
sunyuice完成签到 ,获得积分10
4秒前
Owen应助小巧的成败采纳,获得10
4秒前
白大褂的路完成签到 ,获得积分10
4秒前
领导范儿应助柏康娜采纳,获得10
4秒前
张卓关注了科研通微信公众号
4秒前
肝胆外科医生完成签到,获得积分10
5秒前
5秒前
敏静完成签到,获得积分10
6秒前
6秒前
7秒前
峰峰的完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
CodeCraft应助Hover采纳,获得10
10秒前
颇黎完成签到,获得积分10
10秒前
10秒前
王哇噻发布了新的文献求助10
10秒前
薯条狂热爱好者完成签到 ,获得积分10
10秒前
11秒前
Tim发布了新的文献求助30
12秒前
雨淋沐风发布了新的文献求助10
12秒前
嗡嗡嗡发布了新的文献求助10
13秒前
SYT完成签到,获得积分10
14秒前
JKL发布了新的文献求助10
14秒前
14秒前
12发布了新的文献求助10
14秒前
我是老大应助meimei采纳,获得10
14秒前
Yuchaoo发布了新的文献求助10
15秒前
summer发布了新的文献求助10
15秒前
李健的小迷弟应助黑白采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599