Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning–Based Models

乳腺癌 癌症 计算机科学 人工智能 机器学习 医学 内科学
作者
Hasna El Haji,Amine Souadka,Bhavik N. Patel,Nada Sbihi,Gokul Ramasamy,Bhavika K. Patel,Mounir Ghogho,Imon Banerjee
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:7
标识
DOI:10.1200/cci.23.00049
摘要

PURPOSE Selection of appropriate adjuvant therapy to ultimately reduce the risk of breast cancer (BC) recurrence is a challenge for medical oncologists. Several automated risk prediction models have been developed using retrospective clinical data and have evolved significantly over the years in terms of predictors of recurrence, data usage, and predictive techniques (statistical/machine learning [ML]). METHODS Following PRISMA guidelines, we performed a systematic literature review of the aforementioned statistical and ML models published between January 2008 and December 2022 through searching five digital databases—PubMed, ScienceDirect, Scopus, Cochrane, and Web of Science. The comprehensive search yielded a total of 163 papers and after a screening process focusing on papers that dealt exclusively with statistical/ML methods, only 23 papers were deemed appropriate for further analysis. We benchmarked the studies on the basis of development, evaluation metrics, and validation strategy with an added emphasis on racial diversity of patients included in the studies. RESULTS In total, 30.4% of the included studies use statistical techniques, while 69.6% are ML-based. Among these, traditional ML models (support vector machines, decision tree, logistic regression, and naïve Bayes) are the most frequently used (26.1%) along with deep learning (26.1%). Deep learning and ensemble learning provide the most accurate predictions (AUC = 0.94 each). CONCLUSION ML-based prediction models exhibit outstanding performance, yet their practical applicability might be hindered by limited interpretability and reduced generalization. Moreover, predictive models for BC recurrence often focus on limited variables related to tumor, treatment, molecular, and clinical features. Imbalanced classes and the lack of open-source data sets impede model development and validation. Furthermore, existing models predominantly overlook African and Middle Eastern populations, as they are trained and validated mainly on Caucasian and Asian patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KOBE94FU完成签到,获得积分10
刚刚
赵奇瑶发布了新的文献求助10
刚刚
新年快乐发布了新的文献求助10
1秒前
慕斯完成签到,获得积分10
1秒前
LLxiaolong完成签到,获得积分10
1秒前
帕克发布了新的文献求助10
1秒前
Minnie完成签到,获得积分20
2秒前
2秒前
山260完成签到 ,获得积分10
2秒前
调皮的薯片完成签到,获得积分10
2秒前
穆思柔完成签到,获得积分10
2秒前
科研通AI5应助金蛋蛋采纳,获得10
3秒前
Zangzang完成签到,获得积分10
3秒前
mumu发布了新的文献求助10
3秒前
梁晓玲完成签到,获得积分10
4秒前
porcelain完成签到,获得积分10
5秒前
5秒前
李裕完成签到,获得积分10
5秒前
美丽心情完成签到,获得积分10
6秒前
窦房结完成签到,获得积分10
6秒前
爱撒娇的大白菜真实的钥匙完成签到 ,获得积分10
6秒前
7秒前
7秒前
Irving发布了新的文献求助10
7秒前
谷谷发布了新的文献求助10
7秒前
希望天下0贩的0应助dm11采纳,获得10
7秒前
新年快乐完成签到,获得积分10
8秒前
少吃顿饭并不难完成签到 ,获得积分10
9秒前
科研通AI2S应助小紫采纳,获得10
9秒前
cdercder应助小紫采纳,获得10
9秒前
自然卷卷完成签到,获得积分10
9秒前
du完成签到,获得积分10
10秒前
yoon发布了新的文献求助10
10秒前
zhzzhz完成签到,获得积分10
11秒前
cheche完成签到,获得积分20
12秒前
13秒前
我是站长才怪应助青栞采纳,获得10
14秒前
健忘的灵槐完成签到,获得积分10
14秒前
14秒前
lc完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841240
求助须知:如何正确求助?哪些是违规求助? 3383270
关于积分的说明 10528888
捐赠科研通 3103224
什么是DOI,文献DOI怎么找? 1709200
邀请新用户注册赠送积分活动 822985
科研通“疑难数据库(出版商)”最低求助积分说明 773764