AdaFuse: Adaptive Medical Image Fusion Based on Spatial-Frequential Cross Attention

计算机科学 图像融合 模态(人机交互) 人工智能 融合 保险丝(电气) 模式 空间频率 情态动词 合并(版本控制) 计算机视觉 模式识别(心理学) 图像(数学) 情报检索 工程类 物理 哲学 语言学 高分子化学 社会学 电气工程 光学 社会科学 化学
作者
Xian‐Ming Gu,Lihui Wang,Zeyu Deng,Ying Cao,Xingyu Huang,Yuemin Zhu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2310.05462
摘要

Multi-modal medical image fusion is essential for the precise clinical diagnosis and surgical navigation since it can merge the complementary information in multi-modalities into a single image. The quality of the fused image depends on the extracted single modality features as well as the fusion rules for multi-modal information. Existing deep learning-based fusion methods can fully exploit the semantic features of each modality, they cannot distinguish the effective low and high frequency information of each modality and fuse them adaptively. To address this issue, we propose AdaFuse, in which multimodal image information is fused adaptively through frequency-guided attention mechanism based on Fourier transform. Specifically, we propose the cross-attention fusion (CAF) block, which adaptively fuses features of two modalities in the spatial and frequency domains by exchanging key and query values, and then calculates the cross-attention scores between the spatial and frequency features to further guide the spatial-frequential information fusion. The CAF block enhances the high-frequency features of the different modalities so that the details in the fused images can be retained. Moreover, we design a novel loss function composed of structure loss and content loss to preserve both low and high frequency information. Extensive comparison experiments on several datasets demonstrate that the proposed method outperforms state-of-the-art methods in terms of both visual quality and quantitative metrics. The ablation experiments also validate the effectiveness of the proposed loss and fusion strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蟑螂发布了新的文献求助10
刚刚
刚刚
yier发布了新的文献求助10
1秒前
1秒前
1秒前
Qian完成签到,获得积分10
1秒前
felix发布了新的文献求助10
2秒前
热情饼干发布了新的文献求助10
2秒前
2秒前
搜集达人应助无敌采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
呵呵发布了新的文献求助10
7秒前
SciGPT应助XiaoJie采纳,获得10
7秒前
ypg666666发布了新的文献求助10
7秒前
所所应助wanwan采纳,获得10
8秒前
24p0关注了科研通微信公众号
9秒前
yier完成签到,获得积分10
9秒前
你姜子发布了新的文献求助10
10秒前
10秒前
薏米人儿完成签到 ,获得积分10
11秒前
赘婿应助Jorna采纳,获得10
13秒前
陈jiajia发布了新的文献求助10
13秒前
爆米花应助dsgvdf采纳,获得20
13秒前
明理的寒云完成签到,获得积分10
13秒前
Josie发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
15秒前
16秒前
青柠发布了新的文献求助10
16秒前
酷波er应助durance采纳,获得10
16秒前
任任任发布了新的文献求助30
17秒前
17秒前
ypg666666发布了新的文献求助10
18秒前
mwl完成签到 ,获得积分10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096