Seismic fault identification in coal mines based on the self-organizing map-gray wolf optimizer-support vector machine algorithm

支持向量机 数据挖掘 粒子群优化 算法 计算机科学 主成分分析 人工智能 断层(地质) 模式识别(心理学) 遗传算法 人工神经网络 机器学习 地质学 地震学
作者
Yufei Gong,Chenyang Zhu,Guowei Zhu,Lei Zhang,Guangui Zou
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:12 (1): B1-B15
标识
DOI:10.1190/int-2023-0025.1
摘要

Accurate fault identification in coal mines is important to improve mine safety and economic benefits. We compare various intelligent algorithms for data preprocessing and optimization and analyze the construction methods of seismic attribute data sets and the performance of intelligent optimization algorithms using fault identification accuracy as the discrimination index to find a better combined model for seismic fault identification. First, the training data set is constructed by mining the fault and nonfault information revealed by the roadway. The distribution characteristics of the seismic attribute data indicate similarities among them, and they are nonlinearly separable. Directly using the attributes to construct the data set, the accuracy of fault identification using the support vector machine (SVM) model is 78.41%. Principal component analysis (PCA) and self-organizing mapping (SOM) neural networks are used to extract effective information and then combined with the SVM classification model, and the accuracy of fault identification is 83.82% and 87.47%, respectively. Compared with the original data and PCA dimensionality reduction data, the accuracy of fault detection is improved by 9.06% and 3.66%, respectively, indicating that SOM can effectively improve the accuracy of fault detection by eliminating similar attributes and reducing the weight of redundant information. Then, through a fixed attribute data set, genetic algorithm (GA), particle swarm optimization (PSO), and gray wolf optimizer (GWO) intelligent optimization algorithms are used to find the optimal kernel function parameter and penalty parameter of the SVM classifier. The accuracy rate of the SOM-GWO-SVM model reaches 91.12%, compared with the SOM-PSO-SVM and SOM-GA-SVM, and the model accuracy is increased by 5.2% and 5.61%, respectively. Compared with PSO and GA, the GWO algorithm has a better global search ability. The identification result of the SOM-GWO-SVM model is closest to the actual fault exposure, especially for the identification of “short” faults and associated faults, which has obvious advantages over the traditional manual interpretation in terms of efficiency and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalahei完成签到,获得积分10
刚刚
sdl发布了新的文献求助10
1秒前
2秒前
NMZN完成签到,获得积分10
2秒前
海带关注了科研通微信公众号
3秒前
tzjz_zrz完成签到,获得积分10
3秒前
lyn完成签到,获得积分10
3秒前
无花果应助junsizzz采纳,获得10
3秒前
叶叶子完成签到,获得积分10
3秒前
4秒前
鲤鱼小蕾发布了新的文献求助30
5秒前
找文献完成签到 ,获得积分10
5秒前
小蘑菇应助雷家采纳,获得10
5秒前
6秒前
灵巧的大开完成签到 ,获得积分10
6秒前
Annie完成签到,获得积分10
6秒前
6秒前
鱼圆杂铺完成签到,获得积分10
7秒前
7秒前
超级李包包完成签到,获得积分10
8秒前
9秒前
9秒前
可可发布了新的文献求助10
9秒前
韦涔完成签到,获得积分10
10秒前
淡定的健柏完成签到 ,获得积分10
10秒前
George完成签到,获得积分10
10秒前
sumugeng完成签到,获得积分10
10秒前
Iron_five完成签到 ,获得积分10
11秒前
Gu完成签到 ,获得积分10
11秒前
斯文败类应助彩虹大侠采纳,获得10
11秒前
iu发布了新的文献求助10
11秒前
CHANG完成签到 ,获得积分10
12秒前
唐同学发布了新的文献求助10
13秒前
冷静的奇迹完成签到,获得积分10
13秒前
倩倩发布了新的文献求助10
13秒前
JamesPei应助chai采纳,获得10
13秒前
13秒前
魔幻嚓茶完成签到,获得积分10
14秒前
Nashe完成签到,获得积分10
14秒前
LYF完成签到 ,获得积分10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764