CAN-Net: A Multi-hidden Layer Attention Deep Learning Method for Surface Roughness Prediction During Abrasive Belt Grinding of Superalloy with Local Weights

高温合金 磨料 研磨 计算机科学 材料科学 表面粗糙度 人工神经网络 表面光洁度 人工智能 复合材料 合金
作者
Guijian Xiao,Bao Zhu,Youdong Zhang,Hui Gao,Kun Li
出处
期刊:International Journal on Artificial Intelligence Tools [World Scientific]
卷期号:32 (06) 被引量:3
标识
DOI:10.1142/s0218213023500240
摘要

Nickel-based superalloys are widely employed in aerospace due to their excellent high-temperature strength, good oxidation resistance, and hot corrosion resistance. Abrasive belt grinding can effectively solve the problems of excessive residual stress and tool wear during the processing of superalloys. However, due to the grinding process being complex and changeable, and a wide range of affecting factors, the surface roughness prediction of abrasive belt grinding has become a challenging topic. In this study, a CAN-Net multi-hidden layer deep learning prediction model is established. The concatenate path is utilized to fuse local weights to optimize the intermediate weights of network training. To increase the predictability of the model, the attention mechanism is included to distribute the weights of the grinding parameters, and the impact of the attention mechanism on the prediction is then carefully analyzed. The results demonstrate that the CAN-Net network model has outstanding parameter flexibility and prediction accuracy, with accuracy reaching 0.984 and a correlation coefficient of 0.981 between the anticipated value and the true value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenhunhun完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
四斤瓜完成签到 ,获得积分10
刚刚
1秒前
tx发布了新的文献求助10
1秒前
1秒前
1秒前
希望天下0贩的0应助dali采纳,获得10
1秒前
2秒前
韦涔发布了新的文献求助150
2秒前
波波波波波6764完成签到,获得积分10
2秒前
zyy621发布了新的文献求助30
2秒前
桑叶发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI5应助或无情采纳,获得10
4秒前
灰灰发布了新的文献求助10
5秒前
笨笨晓蓝发布了新的文献求助10
5秒前
5秒前
6秒前
董迪发布了新的文献求助10
6秒前
科研通AI5应助猪猪hero采纳,获得10
6秒前
6秒前
樱桃窝窝头完成签到,获得积分10
6秒前
顺利的夜梦完成签到,获得积分10
6秒前
lalala发布了新的文献求助10
7秒前
7秒前
7秒前
领导范儿应助皮代谷采纳,获得10
7秒前
SYLH应助吉吉采纳,获得30
8秒前
zzx发布了新的文献求助10
8秒前
1461644768完成签到,获得积分10
8秒前
9秒前
左左完成签到,获得积分10
10秒前
10秒前
凯卮完成签到,获得积分10
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765