Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer

计算生物学 微阵列分析技术 基因表达 基因 生物 微阵列 胰腺癌 基因表达谱 鉴定(生物学) 癌症 生物信息学 遗传学 植物
作者
Md. Bayazid Hossen,Md. Ariful Islam,Md. Selim Reza,Md. Kaderi Kibria,Md. Abu Horaira,Khanis Farhana Tuly,Md. Omar Faruqe,Firoz Kabir,Md. Nurul Haque Mollah
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106411-106411 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.106411
摘要

Pancreatic cancer (PC) is one of the leading causes of cancer-related death globally. So, identification of potential molecular signatures is required for diagnosis, prognosis, and therapies of PC. In this study, we detected 71 common differentially expressed genes (cDEGs) between PC and control samples from four microarray gene-expression datasets (GSE15471, GSE16515, GSE71989, and GSE22780) by using robust statistical and machine learning approaches, since microarray gene-expression datasets are often contaminated by outliers due to several steps involved in the data generating processes. Then we detected 8 cDEGs (ADAM10, COL1A2, FN1, P4HB, ITGB1, ITGB5, ANXA2, and MYOF) as the PC-causing key genes (KGs) by the protein-protein interaction (PPI) network analysis. We validated the expression patterns of KGs between case and control samples by box plot analysis with the TCGA and GTEx databases. The proposed KGs showed high prognostic power with the random forest (RF) based prediction model and Kaplan-Meier-based survival probability curve. The KGs regulatory network analysis detected few transcriptional and post-transcriptional regulators for KGs. The cDEGs-set enrichment analysis revealed some crucial PC-causing molecular functions, biological processes, cellular components, and pathways that are associated with KGs. Finally, we suggested KGs-guided five repurposable drug molecules (Linsitinib, CX5461, Irinotecan, Timosaponin AIII, and Olaparib) and a new molecule (NVP-BHG712) against PC by molecular docking. The stability of the top three protein-ligand complexes was confirmed by molecular dynamic (MD) simulation studies. The cross-validation and some literature reviews also supported our findings. Therefore, the finding of this study might be useful resources to the researchers and medical doctors for diagnosis, prognosis and therapies of PC by the wet-lab validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
4秒前
蒋时晏应助啦啦啦啦啦采纳,获得30
5秒前
keira完成签到,获得积分10
6秒前
安详的未来完成签到,获得积分20
10秒前
11秒前
科研通AI2S应助Bin_Liu采纳,获得10
12秒前
烟花应助麦兜不卖兜采纳,获得10
13秒前
paper完成签到 ,获得积分10
14秒前
午休发布了新的文献求助10
15秒前
张宏宇发布了新的文献求助10
16秒前
20秒前
keira发布了新的文献求助10
20秒前
徐徐发布了新的文献求助20
21秒前
hhhhhhhhhh完成签到 ,获得积分10
22秒前
大个应助张宏宇采纳,获得10
25秒前
1111发布了新的文献求助10
26秒前
CipherSage应助小闵采纳,获得10
26秒前
26秒前
我是老大应助lulyt采纳,获得10
27秒前
洁净的老寿星完成签到,获得积分10
31秒前
32秒前
32秒前
dada完成签到 ,获得积分10
33秒前
why完成签到,获得积分10
35秒前
吉吉完成签到,获得积分10
35秒前
abb完成签到,获得积分10
36秒前
37秒前
小闵发布了新的文献求助10
38秒前
整齐芷文完成签到,获得积分10
38秒前
pluto应助jyyg采纳,获得10
39秒前
吉吉发布了新的文献求助10
41秒前
FashionBoy应助沈海采纳,获得10
41秒前
8R60d8应助科研通管家采纳,获得10
43秒前
传奇3应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
搜集达人应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
8R60d8应助科研通管家采纳,获得10
44秒前
研友_n2Q9KL应助科研通管家采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535