Image segmentation, classification, and recognition methods for wheat diseases: Two Decades’ systematic literature review

人工智能 图像分割 分割 模式识别(心理学) 计算机科学 计算机视觉
作者
Deepak Kumar,Vinay Kukreja
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109005-109005 被引量:5
标识
DOI:10.1016/j.compag.2024.109005
摘要

Due to wheat diseases (WD), the global rate of wheat production is decreasing by 3.6% annually. With the help of computer vision technology, WD recognition is not a challenging task but motivates the concepts of image processing, image segmentation, feature extraction, and AI-based recognition models. The objective of this study is to review and systematically analyze studies that have been published between 2005 and 2022. The authors make an effort to determine the important developments in image segmentation models, tools, datasets, and comparative analysis for the accuracy of the recognition model. The current study follows the standard systematic literature review (SLR) approach and selects 638 studies from five different web source databases. Among 638 studies, 544 studies were discarded in the study extraction process. A total number of 94 studies have been published in 45 reputed journals, and 49 conferences that have been identified with evaluation, validation, proposed, and philosophical criteria. After analysis, ten types of image segmentation models were identified. The most prominent clustering-based image segmentation technique (34.78%) is used for powdery mildew and stripe rust WD recognition. During WD recognition, the accuracy performance parameter is found to be most prominent. China and India are the two countries on the Asian continent that contribute to WD recognition. The current study summarizes the findings of WD research and highlights the need for standard datasets and accuracy. It highlights the importance of exploring and developing more precise and hybrid segmentation classification models for WD recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐人完成签到 ,获得积分10
7秒前
8秒前
五月完成签到 ,获得积分10
21秒前
哭泣青烟完成签到 ,获得积分10
25秒前
科研小白书hz完成签到 ,获得积分10
28秒前
酷炫的蓝完成签到,获得积分20
43秒前
zhdjj完成签到 ,获得积分10
46秒前
139完成签到 ,获得积分0
46秒前
五條小羊完成签到 ,获得积分10
49秒前
布蓝图完成签到 ,获得积分10
52秒前
LOST完成签到 ,获得积分10
54秒前
惧感完成签到 ,获得积分10
55秒前
花开四海完成签到 ,获得积分10
56秒前
56秒前
btcat完成签到,获得积分10
59秒前
1分钟前
1分钟前
RYAN完成签到 ,获得积分10
1分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
1分钟前
gmjinfeng完成签到,获得积分0
1分钟前
熊博士完成签到 ,获得积分10
1分钟前
17完成签到 ,获得积分10
1分钟前
wtzhang16完成签到 ,获得积分10
1分钟前
清脆初晴完成签到,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
Wanyeweiyu完成签到,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
落叶捎来讯息完成签到 ,获得积分10
1分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
牛八先生完成签到,获得积分10
2分钟前
张先生完成签到 ,获得积分10
2分钟前
HeLL0完成签到 ,获得积分10
2分钟前
小黄人完成签到 ,获得积分10
2分钟前
小马甲应助安静成威采纳,获得10
2分钟前
2分钟前
licheng完成签到,获得积分10
2分钟前
2分钟前
tmobiusx完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782723
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234458
捐赠科研通 3043084
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994