已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large Foundation Model Empowered Discriminative Underwater Image Enhancement

水下 判别式 计算机科学 基础(证据) 遥感 人工智能 计算机视觉 地质学 地理 海洋学 考古
作者
Hao Wang,Kevin Köser,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:33
标识
DOI:10.1109/tgrs.2025.3525962
摘要

The underwater color disparity is an important cue for enhancing an underwater image. Applying the underwater color disparity indiscriminately to the entire underwater image tends to give rise to foreground-background crosstalk with either excessive foreground or insufficient background enhancement. To address the discriminativeness between underwater color disparities in foreground and background regions, we develop a discriminative underwater image enhancement method empowered by large foundation model technology. We first utilize the Segment Anything Model to generate segmentation masks, dividing the underwater image into foreground and background regions. This enables accurate foreground-background separation. Then, we conduct adaptive color compensation and fusion to improve the color histogram similarity for foreground and background regions separately. This corrects color deviations and improves contrasts in a discriminative manner that avoids the foreground-background crosstalk. Finally, we propose high-frequency edge fusion to extract high-frequency components from both the original underwater image and the fused image, and then fuse these components to obtain the final enhanced image. This eliminates blurred details arising from the discriminative processing of foreground and background regions. Our method represents the pioneering application of large foundation model technology to empower underwater image enhancement. Experimental results indicate that our method outperforms nine state-of-the-art underwater image enhancement methods in visual quality, achieves superior results across five underwater image quality evaluation metrics on three underwater image datasets, and is beneficial for practical applications such as underwater feature matching. We release our code at https://gitee.com/wanghaoupc/UIE SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
精明向梦发布了新的文献求助10
1秒前
yhd完成签到,获得积分10
2秒前
3秒前
蒋蒋蒋蒋发布了新的文献求助10
3秒前
4秒前
科目三应助士心采纳,获得10
4秒前
浮游应助Du采纳,获得10
6秒前
木子发布了新的文献求助10
6秒前
黄浩完成签到,获得积分20
6秒前
小马甲应助妮妮采纳,获得10
9秒前
精明向梦完成签到,获得积分10
11秒前
hhhhhh关注了科研通微信公众号
13秒前
13秒前
Hello应助精明向梦采纳,获得10
15秒前
16秒前
17秒前
17秒前
18秒前
天天快乐应助枫叶-ZqqC采纳,获得10
19秒前
可爱的函函应助玉ER采纳,获得10
19秒前
laj发布了新的文献求助10
20秒前
大个应助木子采纳,获得10
20秒前
热心如花完成签到 ,获得积分10
20秒前
ding应助哈哈哈采纳,获得10
20秒前
yangkaiyu完成签到,获得积分10
21秒前
大模型应助清脆泥猴桃采纳,获得10
21秒前
糖豆子完成签到,获得积分10
21秒前
xixi发布了新的文献求助10
23秒前
妮妮发布了新的文献求助10
24秒前
26秒前
浮游应助xinxin采纳,获得10
28秒前
许子峻发布了新的文献求助10
30秒前
香蕉觅云应助laj采纳,获得10
30秒前
tt完成签到 ,获得积分10
32秒前
hileborn完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
碧蓝白玉完成签到,获得积分20
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969