Large Foundation Model Empowered Discriminative Underwater Image Enhancement

水下 判别式 计算机科学 基础(证据) 遥感 人工智能 计算机视觉 地质学 地理 海洋学 考古
作者
Hao Wang,Kevin Köser,Peng Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:8
标识
DOI:10.1109/tgrs.2025.3525962
摘要

The underwater color disparity is an important cue for enhancing an underwater image. Applying the underwater color disparity indiscriminately to the entire underwater image tends to give rise to foreground-background crosstalk with either excessive foreground or insufficient background enhancement. To address the discriminativeness between underwater color disparities in foreground and background regions, we develop a discriminative underwater image enhancement method empowered by large foundation model technology. We first utilize the Segment Anything Model to generate segmentation masks, dividing the underwater image into foreground and background regions. This enables accurate foreground-background separation. Then, we conduct adaptive color compensation and fusion to improve the color histogram similarity for foreground and background regions separately. This corrects color deviations and improves contrasts in a discriminative manner that avoids the foreground-background crosstalk. Finally, we propose high-frequency edge fusion to extract high-frequency components from both the original underwater image and the fused image, and then fuse these components to obtain the final enhanced image. This eliminates blurred details arising from the discriminative processing of foreground and background regions. Our method represents the pioneering application of large foundation model technology to empower underwater image enhancement. Experimental results indicate that our method outperforms nine state-of-the-art underwater image enhancement methods in visual quality, achieves superior results across five underwater image quality evaluation metrics on three underwater image datasets, and is beneficial for practical applications such as underwater feature matching. We release our code at https://gitee.com/wanghaoupc/UIE SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yxdjzwx完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
板凳发布了新的文献求助30
4秒前
5秒前
三米之内发布了新的文献求助10
8秒前
LeiZha完成签到,获得积分10
8秒前
key发布了新的文献求助10
8秒前
隐形的妙松完成签到,获得积分10
9秒前
祝好发布了新的文献求助10
10秒前
CodeCraft应助钱儿采纳,获得10
11秒前
12秒前
13秒前
xiaoguoxiaoguo完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
科研通AI2S应助瞌瞌采纳,获得10
17秒前
11完成签到,获得积分10
17秒前
清秀不言完成签到 ,获得积分10
17秒前
llxie完成签到,获得积分10
18秒前
溶胶发布了新的文献求助10
20秒前
科研通AI5应助11采纳,获得10
21秒前
情怀应助MnPt采纳,获得10
24秒前
眼睛大的冰岚完成签到,获得积分10
25秒前
桐桐应助今天签到了吗采纳,获得10
25秒前
就算雨也不会停完成签到,获得积分10
27秒前
31秒前
川农辅导员完成签到,获得积分10
31秒前
钟安熠完成签到,获得积分20
34秒前
pluto应助LR采纳,获得20
34秒前
十八完成签到,获得积分10
34秒前
34秒前
忐忑的尔蝶完成签到,获得积分10
35秒前
37秒前
38秒前
KEyanba完成签到,获得积分0
40秒前
key发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921