A Low-Cost 3D Mapping System for Indoor Scenes Based on 2D LiDAR and Monocular Cameras

激光雷达 遥感 单眼 计算机视觉 计算机科学 单目视觉 环境科学 人工智能 地理
作者
Xiaojun Li,Xinrui Li,Guiting Hu,Qi Niu,Luping Xu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (24): 4712-4712 被引量:4
标识
DOI:10.3390/rs16244712
摘要

The cost of indoor mapping methods based on three-dimensional (3D) LiDAR can be relatively high, and they lack environmental color information, thereby limiting their application scenarios. This study presents an innovative, low-cost, omnidirectional 3D color LiDAR mapping system for indoor environments. The system consists of two two-dimensional (2D) LiDARs, six monocular cameras, and a servo motor. The point clouds are fused with imagery using a pixel-spatial dual-constrained depth gradient adaptive regularization (PS-DGAR) algorithm to produce dense 3D color point clouds. During fusion, the point cloud is reconstructed inversely based on the predicted pixel depth values, compensating for areas of sparse spatial features. For indoor scene reconstruction, a globally consistent alignment algorithm based on particle filter and iterative closest point (PF-ICP) is proposed, which incorporates adjacent frame registration and global pose optimization to reduce mapping errors. Experimental results demonstrate that the proposed density enhancement method achieves an average error of 1.5 cm, significantly improving the density and geometric integrity of sparse point clouds. The registration algorithm achieves a root mean square error (RMSE) of 0.0217 and a runtime of less than 4 s, both of which outperform traditional iterative closest point (ICP) variants. Furthermore, the proposed low-cost omnidirectional 3D color LiDAR mapping system demonstrates superior measurement accuracy in indoor environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助细心的梦芝采纳,获得10
刚刚
1秒前
1秒前
2秒前
2秒前
耳冉完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
3秒前
4秒前
缥缈橘子完成签到,获得积分10
4秒前
酷酷依秋完成签到,获得积分10
4秒前
乐乐应助陶醉的难破采纳,获得10
4秒前
5秒前
追风少年完成签到 ,获得积分10
5秒前
5秒前
阿秋发布了新的文献求助10
6秒前
chen发布了新的文献求助10
6秒前
7秒前
7秒前
Orange应助pyy18903275054采纳,获得10
7秒前
JamesPei应助overlood采纳,获得10
8秒前
8秒前
lx123发布了新的文献求助10
9秒前
秋夜白发布了新的文献求助10
9秒前
Xiaomin0335完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
耍酷的千愁完成签到,获得积分10
11秒前
wittig发布了新的文献求助10
12秒前
爱笑的桔子完成签到 ,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
傻傻的夜柳完成签到 ,获得积分10
14秒前
15秒前
隐形曼青应助玛卡巴卡采纳,获得10
15秒前
丘比特应助玛卡巴卡采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508004
求助须知:如何正确求助?哪些是违规求助? 4603457
关于积分的说明 14485563
捐赠科研通 4537487
什么是DOI,文献DOI怎么找? 2486678
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441570