氧烷
X射线光电子能谱
吸附
密度泛函理论
催化作用
分子
Atom(片上系统)
化学
过渡金属
X射线吸收精细结构
活动站点
吸附
吸收光谱法
吸收(声学)
光谱学
材料科学
分析化学(期刊)
物理化学
计算化学
化学工程
有机化学
计算机科学
嵌入式系统
物理
量子力学
工程类
复合材料
作者
Beomgyun Jeong,Hafiz Ghulam Abbas,Benedikt P. Klein,Geunsu Bae,A. Velmurugan,Chang Hyuck Choi,Geonhwa Kim,Dongwoo Kim,Ki-Jeong Kim,Byeong Jun,Young Dok Kim,Frédéric Jaouen,Reinhard J. Maurer,Stefan Ringe
标识
DOI:10.1002/anie.202420673
摘要
Quantifying the number of active sites is a crucial aspect in the performance evaluation of single metal‐atom electrocatalysts. A possible realization is using adsorbing gas molecules that selectively bind to the single‐atom transition metal and then probing their surface density using spectroscopic tools. Herein, using in situ X‐ray photoelectron (XPS) and near edge X‐ray absorption fine structure (NEXAFS) spectroscopy, we detect adsorbed CO gas molecules on a FeNC oxygen reduction single atom catalyst. Correlating XPS and NEXAFS, we develop a simple surface‐ and chemically‐sensitive protocol to accurately and quickly quantify the active site density. Density functional theory‐based X‐ray spectra simulations reaffirm the assignment of the spectroscopic fingerprints of the CO molecules adsorbed at Fe‐N4‐C sites, and provide additional unexpected structural insights about the active site needed to explain the low‐temperature CO adsorption. Our work represents an important step towards an accurate quantitative catalytic performance evaluation, and thus towards developing reliable material design principles and catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI