Deep Tensor Evidence Fusion Network for Sentiment Classification

计算机科学 情绪分析 人工智能 稳健性(进化) 可预测性 机器学习 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Zhongyang Wang,Guoxia Xu,Xiaokang Zhou,Jungyoon Kim,Hu Zhu,Lizhen Deng
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:3
标识
DOI:10.1109/tcss.2022.3197994
摘要

Recently, a multimodal sentiment analysis of social media has attracted increasing attention, and its core idea is to discovery heuristic fusion strategy to analyze the sentiment orientations over heterogeneous multimodal source from a learned compact multimodal representation. The existing multimodal fusion techniques not only struggle to achieve full heterogeneous data interaction, but also they are unable to dynamically assess the quality of various modal data to determine predictability. In this article, we present a novel deep tensor evidence fusion (DTEF) network for multimodal sentiment classification. First, we propose a common view evaluation network that uses a long short-term memory (LSTM) network and a tensor-based neural network to extract rich intermodal and intramodal information. Then, we propose a unique time cue evaluation network that takes advantage of the temporal granularity associated with numerous pattern sequences. To make reliable decisions, we finally incorporate uncertainty through the trusted fusion layer, which improves the accuracy and robustness of sentimental classification. Our model is validated using the CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) and CMU Multimodal Corpus of Sentiment Intensity (CMU-MOSI) datasets, and the experimental findings demonstrate the superior performance of the proposed network in terms of accuracy compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雒雒完成签到,获得积分20
1秒前
4秒前
Jay完成签到,获得积分10
4秒前
711moiii关注了科研通微信公众号
4秒前
孙扬完成签到,获得积分10
5秒前
桐桐应助123采纳,获得10
5秒前
8秒前
哎呀妈呀发布了新的文献求助10
9秒前
酷波er应助snowpie采纳,获得10
10秒前
hush完成签到,获得积分10
12秒前
酷炫的发带完成签到,获得积分10
13秒前
lily88发布了新的文献求助10
14秒前
hooka完成签到 ,获得积分10
17秒前
zhentg完成签到,获得积分10
18秒前
18秒前
zcj完成签到,获得积分10
18秒前
18秒前
19秒前
wakao完成签到,获得积分20
19秒前
DAYDAY完成签到 ,获得积分10
19秒前
20秒前
Li应助DKaiJu采纳,获得10
20秒前
满意的醉蝶完成签到,获得积分10
21秒前
梓七发布了新的文献求助50
23秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
24秒前
龙梦发布了新的文献求助10
24秒前
雪酪芋泥球完成签到 ,获得积分10
24秒前
25秒前
adelalady发布了新的文献求助30
27秒前
qqy完成签到,获得积分10
28秒前
Orange应助Young采纳,获得10
30秒前
30秒前
白英完成签到,获得积分10
31秒前
32秒前
adelalady完成签到,获得积分10
35秒前
WUYONGSHUAI发布了新的文献求助10
35秒前
37秒前
好好好完成签到 ,获得积分10
37秒前
英姑应助饱满的平安采纳,获得10
38秒前
慕青应助鲨鱼鱼采纳,获得10
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445