摘要
Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteriesZhenyu Guo aa Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UKMaterials for Sustainable Development Conference (MATSUS)Proceedings of MATSUS Spring 2024 Conference (MATSUS24)#GENBAT - Next-generation battery technologies towards sustainabilityBarcelona, Spain, 2024 March 4th - 8thOrganizers: REBECA MARCILLA, Cristina Pozo-Gonzalo and Magda TitiriciOral, Zhenyu Guo, presentation 388DOI: https://doi.org/10.29363/nanoge.matsus.2024.388Publication date: 18th December 2023 Emerging sodium-ion batteries (NIBs) and potassium-ion batteries (KIBs) show promise in complementing lithium-ion battery (LIB) technology and diversifying the battery market. Hard carbon is a potential anode candidate for LIBs, NIBs and KIBs due to its high capacity, sustainability, wide availability, and stable physicochemical properties. Herein, a series of hard carbons are synthesized by hydrothermal carbonization and subsequent pyrolysis at different temperatures to finely tune their structural properties. When tested as anodes, the hard carbons exhibit differing ion storage trends for Li, Na and K, with NIBs achieving the highest reversible capacity. Extensive materials and electrochemical characterizations are carried out to study the correlation of structural features with electrochemical performance, and to explain the specific mechanisms of alkali-ion storage in hard carbons. In addition, the best-performing hard carbon is tested against a sodium cathode Na3V2(PO4)3 in a Na-ion pouch cell, displaying a high power density of 2172 W kg-1 at an energy density of 181.5 Wh kg-1 (based on the total weight of active materials in both anode and cathode). The Na-ion pouch cell also shows stable ultralong-term cycling (9000 hours or 5142 cycles) and demonstrates the promising potential of such materials as sustainable, scalable anodes for beyond Li-batteries. © FUNDACIO DE LA COMUNITAT VALENCIANA SCITOnanoGe is a prestigious brand of successful science conferences that are developed along the year in different areas of the world since 2009. Our worldwide conferences cover cutting-edge materials topics like perovskite solar cells, photovoltaics, optoelectronics, solar fuel conversion, surface science, catalysis and two-dimensional materials, among many others.nanoGe Fall MeetingnanoGe Fall Meeting (NFM) is a multiple symposia conference celebrated yearly and focused on a broad set of topics of advanced materials preparation, their fundamental properties, and their applications, in fields such as renewable energy, photovoltaics, lighting, semiconductor quantum dots, 2-D materials synthesis, charge carriers dynamics, microscopy and spectroscopy semiconductors fundamentals, etc.nanoGe Spring MeetingThis conference is a unique series of symposia focused on advanced materials preparation and fundamental properties and their applications, in fields such as renewable energy (photovoltaics, batteries), lighting, semiconductor quantum dots, 2-D materials synthesis and semiconductors fundamentals, bioimaging, etc.International Conference on Hybrid and Organic PhotovoltaicsInternational Conference on Hybrid and Organic Photovoltaics (HOPV) is celebrated yearly in May. The main topics are the development, function and modeling of materials and devices for hybrid and organic solar cells. The field is now dominated by perovskite solar cells but also other hybrid technologies, as organic solar cells, quantum dot solar cells, and dye-sensitized solar cells and their integration into devices for photoelectrochemical solar fuel production.Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and OptoelectronicsThe main topics of the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP) are discussed every year in Asia-Pacific for gathering the recent advances in the fields of material preparation, modeling and fabrication of perovskite and hybrid and organic materials. Photovoltaic devices are analyzed from fundamental physics and materials properties to a broad set of applications. The conference also covers the developments of perovskite optoelectronics, including light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and OptoelectronicsThe International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and Optoelectronics (NIPHO) is the best place to hear the latest developments in perovskite solar cells as well as on recent advances in the fields of perovskite light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.