Universal ion chromatography method for anions in active pharmaceutical ingredients enabled by computer-assisted separation modeling

化学 分析物 色谱法 离子色谱法 活性成分 溶剂 柱色谱法 有机化学 生物信息学 生物
作者
Tianyu Yuan,Dolee Merai,Matthew J. Gunsch,Ryan M. Peters,Sachin Lohani,Frank Bernardoni,Michael A. Zompa,Imad Haidar Ahmad,Erik L. Regalado,Christopher A. Pohl
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:241: 115923-115923
标识
DOI:10.1016/j.jpba.2023.115923
摘要

Ion Chromatography (IC) is one of the most widely used methods for analyzing ionic species in pharmaceutical samples. A universal IC method that can separate a wide range of different analytes is highly desired as it can save a lot of time for method development and validation processes. Herein we report the development of a universal method for anions in active pharmaceutical ingredients (APIs) using computer-assisted chromatography modeling tools. We have screened three different IC columns (Dionex IonPac AS28-Fast 4 µm, AS19 4 µm and AS11-HC 4 µm) to determine the best suitable column for universal IC method development. A universal IC method was then developed using an AS11-HC 4 µm column to separate 31 most common anionic substances in 36 mins. This method was optimized using LC Simulator and a model which precisely predicts the retention behavior of 31 anions was established. This model demonstrated an excellent match between predicted and experimental analyte retention time (R2 =0.999). To validate this universal IC method, we have studied the stability of sulfite and sulfide analytes in ambient conditions. The method was then validated for a subset of 29 anions using water and organic solvent/water binary solvents as diluents for commercial APIs. This universal IC method provides an efficient and simple way to separate and analyze common anions in APIs. In addition, the method development process combined with LC simulator modeling can be effectively used as a starting point during method development for other ions beyond those investigated in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助风中一寡采纳,获得10
刚刚
科目三应助hahahahahe采纳,获得10
2秒前
科研通AI5应助眼睛大发箍采纳,获得10
2秒前
赵狗儿发布了新的文献求助10
4秒前
桀桀桀完成签到,获得积分10
5秒前
科研通AI5应助Stting采纳,获得10
8秒前
8秒前
田様应助TTT采纳,获得10
8秒前
9秒前
9秒前
南边的海完成签到,获得积分10
10秒前
RRRabbit完成签到,获得积分10
12秒前
吴军发布了新的文献求助10
12秒前
12秒前
XLL小绿绿完成签到 ,获得积分10
14秒前
既温柔发布了新的文献求助10
14秒前
lililiiii完成签到,获得积分10
14秒前
武雨寒发布了新的文献求助10
15秒前
研友_V8Qmr8完成签到,获得积分10
16秒前
17秒前
19秒前
吴军完成签到,获得积分10
19秒前
在水一方应助沉静青旋采纳,获得10
19秒前
21秒前
hlxhlx发布了新的文献求助10
21秒前
yelis发布了新的文献求助10
23秒前
荔枝吖发布了新的文献求助10
24秒前
hahahahahe发布了新的文献求助10
25秒前
小李老博应助既温柔采纳,获得10
25秒前
26秒前
海洋调完成签到,获得积分10
28秒前
小李老博应助HJJHJH采纳,获得10
30秒前
TTT发布了新的文献求助10
30秒前
科研助手6应助TT采纳,获得10
30秒前
JT完成签到,获得积分10
30秒前
32秒前
荔枝吖完成签到,获得积分10
32秒前
turbo发布了新的文献求助10
33秒前
33秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572