Spatio-temporal pattern evolution of carbon emissions at the city-county-town scale in Fujian Province based on DMSP/OLS and NPP/VIIRS nighttime light data

温室气体 环境科学 碳纤维 比例(比率) 气象学 地理 自然地理学 地图学 地质学 海洋学 材料科学 复合数 复合材料
作者
Yuanmao Zheng,Menglin Fan,Yaling Cai,Mingzhe Fu,Kexin Yang,Chenyan Wei
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:442: 140958-140958 被引量:16
标识
DOI:10.1016/j.jclepro.2024.140958
摘要

Timely and accurate spatio-temporal carbon emission evolutions at different scales is essential to formulate strategies to reduce region-specific carbon emissions. However, current research on carbon emissions predominantly focuses on national and provincial levels, with few investigations at the city, county, and town levels. This study addresses this gap by examining the Fujian Province as a case study. This study combined DMSP/OLS and NPP/VIIRS nighttime light data to generate a long-term dataset. Based on this extended nighttime light data time series and statistical energy carbon emissions, we constructed a carbon emission estimation model. Carbon emissions were estimated at the city, county, and town scales in Fujian Province between 2000 and 2020. Presenting the research findings below: (i) The optimal R2 for the fusion of the two nighttime light datasets was 0.8878, and the carbon emission estimation model achieved an R2 of 0.6925. (ii) Fujian Province carbon emissions increased from 47.67 million tons in 2000 to 69.15 million tons in 2020. (iii) Fuzhou and seven coastal counties experienced rapid carbon emission increases, with an additional 13, 33, and 32 counties exhibiting fast, moderate, and slow growth, respectively. (iv) County-town scale carbon emissions exhibited spatial clustering; however, the local correlation decreased at the county level. (v) High-carbon regions were concentrated in coastal areas and large cities, with the city size demonstrating a nonlinear impact on carbon emissions. Our findings reveal the spatio-temporal patterns and regional heterogeneity of carbon emissions in the Fujian Province, offering valuable data to formulate region-specific carbon reduction policies and promote low-carbon economies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得100
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
糊涂的笑萍完成签到,获得积分10
6秒前
Tan发布了新的文献求助10
6秒前
6秒前
玄辰完成签到,获得积分10
8秒前
8秒前
无花果应助动听的易巧采纳,获得10
8秒前
9秒前
9秒前
九秋霜完成签到,获得积分10
10秒前
闾丘惜萱完成签到,获得积分10
10秒前
11秒前
11秒前
杨惠文发布了新的文献求助10
12秒前
12秒前
12秒前
horse82发布了新的文献求助10
14秒前
羊白玉完成签到 ,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351