异染性白质营养不良
化学
生物信息学
生物化学
芳基磺酸酶A
结合位点
对接(动物)
医学
基因
护理部
作者
Nivedita Singh,Anil Kumar Singh
出处
期刊:ACS omega
[American Chemical Society]
日期:2024-02-23
卷期号:9 (9): 10748-10768
标识
DOI:10.1021/acsomega.3c09462
摘要
Cerebroside sulfotransferase (CST) is emerging as an important therapeutic target to develop substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD), a rare neurodegenerative lysosomal storage disorder. MLD develops with progressive impairment and destruction of the myelin sheath as a result of accumulation of sulfatide around the nerve cells in the absence of its recycling mechanism with deficiency of arylsulfatase A (ARSA). Sulfatide is the product of the catalytic action of cerebroside sulfotransferase (CST), which needs to be regulated under pathophysiological conditions by inhibitor development. To carry out in silico-based preliminary drug screening or for designing new drug candidates, a high-quality three-dimensional (3D) structure is needed in the absence of an experimentally derived three-dimensional crystal structure. In this study, a 3D model of the protein was developed using a primary sequence with the SWISS-MODEL server by applying the top four GMEQ score-based templates belonging to the sulfotransferase family as a reference. The 3D model of CST highlights the features of the protein responsible for its catalytic action. The CST model comprises five β-strands, which are flanked by ten α-helices from both sides as well as form the upside cover of the catalytic pocket of CST. CST has two catalytic regions: PAPS (-sulfo donor) binding and galactosylceramide (-sulfo acceptor) binding. The catalytic action of CST was proposed via molecular docking and molecular dynamic (MD) simulation with PAPS, galactosylceramide (GC), PAPS-galactosylceramide, and PAP. The stability of the model and its catalytic action were confirmed using molecular dynamic simulation-based trajectory analysis. CST response against the inhibition potential of the experimentally reported competitive inhibitor of CST was confirmed via molecular docking and molecular dynamics simulation, which suggested the suitability of the CST model for future drug discovery to strengthen substrate reduction therapy for MLD.
科研通智能强力驱动
Strongly Powered by AbleSci AI