Timing synchronization of LACO-OFDM under non-linear distortions using ELM

正交频分复用 偏移量(计算机科学) 误码率 估计员 计算机科学 算法 电子工程 频道(广播) 数学 解码方法 工程类 电信 统计 程序设计语言
作者
K S Abhaynarasimha,Ganesh Miriyala,Renikunta Mallaiah,Venkata Mani Vakamulla
出处
期刊:Aeu-international Journal of Electronics and Communications [Elsevier BV]
卷期号:176: 155124-155124 被引量:1
标识
DOI:10.1016/j.aeue.2024.155124
摘要

Layered asymmetrically-clipped optical orthogonal frequency division multiplexing (LACO-OFDM) is a modulation technique for visible light communication (VLC) that provides power and spectral efficiencies. The LACO-OFDM technique utilizes all the available subcarriers and will have a relatively higher peak-to-average power ratio (PAPR). Hence, the modulated samples are prone to distortions caused by the non-linear devices and diffused channels, resulting in reduced accuracy of delay offset estimation for timing synchronization. In this paper, we propose a method to improve the timing synchronization accuracy of LACO-OFDM modulated systems using extreme learning machines (ELM). The ELM is trained offline to identify the delay offset using the timing metric (TM) as a feature identification problem. Among all types of neural networks that are used as classifiers and non-linear estimators, the ELMs are the least complex and require significantly less computational capacity. The simulations are performed to evaluate the accuracy of delay offset estimation in the presence of unknown non-linear effects of high-powered light-emitting diodes (LEDs) and diffused channel characteristics. The results show that the probability of error (PoE) of delay offset estimation and bit error rate (BER) is significantly reduced for scenarios like different frame lengths, channel coefficients, and unknown LED parameters in contrast to conventional methods. The proposed approach attains a PoE of 10−1 at signal-to-noise ratios (SNR)s of 4 dB and 6 dB with various TM, surpassing conventional methods which only achieve this beyond 15 dB. Moreover, the PoE remains below 10−2 for SNRs exceeding 7 dB and 10 dB in the proposed method, while conventional methods require SNRs above 25 dB to achieve comparable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
am完成签到 ,获得积分10
1秒前
1秒前
liu95完成签到 ,获得积分10
1秒前
小蘑菇应助提前去一天采纳,获得10
2秒前
鸡蛋灌饼发布了新的文献求助10
2秒前
CodeCraft应助Zqs采纳,获得10
2秒前
2秒前
时冬冬应助WIK采纳,获得20
3秒前
4秒前
4秒前
5秒前
YH应助LM采纳,获得50
5秒前
李爱国应助YD采纳,获得10
7秒前
共享精神应助小寒采纳,获得10
7秒前
8秒前
执意发布了新的文献求助10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
金海涵应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
fang发布了新的文献求助10
9秒前
思源应助蛙桑采纳,获得10
9秒前
失眠醉易应助科研通管家采纳,获得20
9秒前
良辰应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
良辰应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
良辰应助科研通管家采纳,获得10
10秒前
10秒前
冷酷沛柔完成签到,获得积分10
11秒前
兴奋银耳汤完成签到,获得积分10
11秒前
大茜发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838855
求助须知:如何正确求助?哪些是违规求助? 3381275
关于积分的说明 10517605
捐赠科研通 3100746
什么是DOI,文献DOI怎么找? 1707746
邀请新用户注册赠送积分活动 821892
科研通“疑难数据库(出版商)”最低求助积分说明 773033