Construction and optimization of watershed-scale ecological network based on complex network method: A case study of Erhai Lake Basin in China

生态网络 生态学 恢复生态学 中间性中心性 生态稳定性 分水岭 构造盆地 环境资源管理 地理 环境科学 中心性 计算机科学 生态系统 地质学 生物 机器学习 古生物学 数学 组合数学
作者
Tengwen Wang,Yuchen Huang,Junhao Cheng,Hang Xiong,Ying Yue,Yu Feng,Jin Man Wang
出处
期刊:Ecological Indicators [Elsevier]
卷期号:160: 111794-111794 被引量:31
标识
DOI:10.1016/j.ecolind.2024.111794
摘要

The ecological network construction and optimization are of great significance in ensuring regional ecological security and optimizing the ecological space of the national territory, therefore constructing the ecological spatial network and proposing optimization countermeasures are conducive to enhancing regional ecological stability. However, current research on ecological networks ignores the ecospatial community structure and the topology characteristics of ecological networks, and lacks a systematic optimization framework. The research scope of the ecological network primarily concentrates on urban administrative units, with less emphasis on the geographic scale of watersheds. This approach is not conducive to the comprehensive management of all elements of ecosystems. Therefore, this research took Erhai Lake Basin as an object, adopted Morphological Spatial Pattern Analysis (MSPA) and landscape connectivity to extract ecological sources, simulate corridors and identify the weak points through the model of Minimum Cumulative Resistance (MCR) and gravity model, constructed the ecological network of Erhai Lake Basin, topologized the ecological network by using the Gephi platform. Based on the results of the analysis of complex network indicators, the optimization strategy of increasing edges was proposed. Priority conservation areas were further identified, an ecological security pattern was designed, and an ecological restoration strategy was planned. Results show that 28 ecological sources, 378 potential ecological corridors, 48 important ecological corridors and 86 ecological weak points formed the complex ecological network in Erhai Lake Basin. The network had clear clustering characteristics and instability, with a high degree concentration in the northeast and uneven betweenness centrality, especially higher in the east. Through topology analysis, 12 increased edge nodes were identified, 9 increased edges were simulated, and 26 weak points were added, significantly improving the network robustness. Based on the ecological security pattern, the restoration strategy with strict control around the lake, conservation of barrier belts and management of priority areas were designed. This study implemented increased edge optimization based on complex network analysis to enhance the stability of the network, which provides a theoretical basis for the optimization of the spatial pattern of Erhai Lake Basin, and is a useful exploration of the ecologically fragile watersheds to protect the environment and achieve high-quality sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
竹梦幽篁发布了新的文献求助10
刚刚
随机完成签到,获得积分10
刚刚
CipherSage应助研友_Zb17ln采纳,获得10
刚刚
香菜完成签到,获得积分10
刚刚
BioRick发布了新的文献求助10
刚刚
耳东静完成签到,获得积分10
刚刚
王忠凯发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
一一发布了新的文献求助10
2秒前
2秒前
2秒前
晓磊发布了新的文献求助10
2秒前
2秒前
张萌发布了新的文献求助10
2秒前
吕亦寒完成签到,获得积分10
2秒前
刺猬完成签到 ,获得积分10
2秒前
2秒前
2秒前
dzz0120发布了新的文献求助30
3秒前
付艳完成签到,获得积分10
3秒前
安详苠发布了新的文献求助10
3秒前
zhonglv7应助不二采纳,获得10
3秒前
4秒前
4秒前
4秒前
自然毛巾发布了新的文献求助10
4秒前
李大侠完成签到,获得积分10
4秒前
4秒前
酷波er应助wesley采纳,获得10
4秒前
勤恳乐瑶发布了新的文献求助10
5秒前
所所应助禹宛白采纳,获得10
5秒前
上官蔚蓝完成签到,获得积分10
5秒前
完美世界应助Xhh采纳,获得20
6秒前
荧光闪烁完成签到,获得积分10
6秒前
李大侠发布了新的文献求助10
6秒前
BioRick完成签到,获得积分10
7秒前
XZTX发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769099
求助须知:如何正确求助?哪些是违规求助? 5578176
关于积分的说明 15420439
捐赠科研通 4902827
什么是DOI,文献DOI怎么找? 2637955
邀请新用户注册赠送积分活动 1585825
关于科研通互助平台的介绍 1540963