Role of artificial‐intelligence‐assisted automated cardiac biometrics in prenatal screening for coarctation of aorta

主动脉缩窄 生物识别 产前诊断 医学 人工智能 主动脉 心脏病学 计算机科学 怀孕 生物 胎儿 遗传学
作者
Caroline Taksøe‐Vester,Kamil Mikolaj,O. B. Petersen,Niels Vejlstrup,Anders Nymark Christensen,Aasa Feragen,M. Nielsen,Morten Bo Søndergaard Svendsen,Martin G. Tolsgaard
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (1): 36-43 被引量:4
标识
DOI:10.1002/uog.27608
摘要

ABSTRACT Objective Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18–22‐week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA. Methods We developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four‐chamber and three‐vessel views were included in a logistic regression‐based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver‐operating‐characteristics (ROC) curves. Results At the 18–22‐week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z ‐scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA ( n = 73) and healthy controls ( n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%. Conclusions The integration of AI technology with automated cardiac biometric measurements obtained during the 18–22‐week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得30
6秒前
6秒前
清秀不言完成签到 ,获得积分10
7秒前
7秒前
YJ完成签到,获得积分10
11秒前
cis2014发布了新的文献求助10
11秒前
从容的水壶完成签到 ,获得积分10
13秒前
15秒前
16秒前
18秒前
Warming完成签到 ,获得积分10
19秒前
穆奕完成签到 ,获得积分10
19秒前
小鹿发布了新的文献求助10
19秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
20秒前
RaynorHank发布了新的文献求助10
21秒前
发量多的秃子完成签到,获得积分10
21秒前
翁雁丝完成签到 ,获得积分10
24秒前
个性仙人掌完成签到 ,获得积分10
28秒前
寂寞的诗云完成签到,获得积分10
32秒前
33秒前
Lj完成签到,获得积分10
35秒前
drew完成签到 ,获得积分10
35秒前
科研通AI5应助yiyi采纳,获得10
36秒前
寒冷的如之完成签到 ,获得积分10
38秒前
43秒前
哈桑士完成签到 ,获得积分10
50秒前
阿姊完成签到 ,获得积分10
51秒前
666星爷完成签到,获得积分10
52秒前
小马完成签到 ,获得积分10
58秒前
隐形白开水完成签到,获得积分10
1分钟前
1分钟前
卞卞完成签到,获得积分10
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
Q谈小丸子完成签到,获得积分10
1分钟前
李成恩完成签到 ,获得积分10
1分钟前
1分钟前
wxxz完成签到,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
华仔应助老阳采纳,获得30
1分钟前
风中的向卉完成签到 ,获得积分10
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811753
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379166
捐赠科研通 3072972
什么是DOI,文献DOI怎么找? 1688168
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893