沃伦斯基
Korteweg–de Vries方程
转化(遗传学)
双线性插值
双线性形式
应用数学
等级制度
Kadomtsev–Petviashvili方程
双线性变换
物理
数学
数学分析
非线性系统
偏微分方程
计算机科学
数字滤波器
生物化学
化学
统计
滤波器(信号处理)
量子力学
经济
伯格斯方程
市场经济
计算机视觉
基因
作者
Li Cheng,Yi Zhang,Wen‐Xiu Ma,Ying-Wu Hu
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-01-01
卷期号:36 (1)
被引量:2
摘要
The main topic of the paper is to investigate the generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) and Korteweg–de Vries (KdV) equations, which are widely used in many physical areas, especially in fluids. A new Wronskian formulation is presented for these two equations associated with the bilinear Bäcklund transformation. Based on Wronskian identities of the bilinear Kadomtsev–Petviashvili (KP) hierarchy, the Wronskian determinant solution is verified by a direct and concise calculation. The newly introduced Wronskian formulation provides a comprehensive way for building rational solutions. A few rational Wronskian solutions of lower order are computed for the generalized (2 + 1)-dimensional DJKM equation. Our work can show that the extended (2 + 1)-dimensional KdV equation possesses the similar rational Wronskian solutions through the corresponding logarithmic transformation.
科研通智能强力驱动
Strongly Powered by AbleSci AI