A review of all‐solid‐state lithium‐selenium batteries

能量密度 纳米技术 储能 快离子导体 阳极 计算机科学 锂(药物) 生化工程 风险分析(工程) 材料科学 工程类 电解质 工程物理 业务 化学 医学 物理 量子力学 内分泌学 物理化学 功率(物理) 电极
作者
Baiyu Guo,Liqiang Zhang,Yongfu Tang,Jianyu Huang
出处
期刊:Battery energy 卷期号:3 (1) 被引量:4
标识
DOI:10.1002/bte2.20230041
摘要

Abstract Rechargeable lithium‐selenium batteries (LSeBs) are promising candidates for next‐generation energy storage systems due to their exceptional theoretical volumetric energy density (3253 mAh cm −3 ). However, akin to lithium‐sulfur batteries, the adoption of LSeBs has been hampered by problems such as polyselenides migration in liquid electrolytes, uncontrolled dendrite growth and safety concerns. To overcome these issues, researchers proposed to use the solid‐state electrolytes (SSEs) as a method, which could mitigate the formation of polyselenides. However, practical utilization of the all‐solid‐state Li‐Se batteries (ASSLSeBs) face significant obstacles, including sluggish redox kinetics during Se conversion (Se ↔ Li 2 Se), inadequate interfacial contact and formation of Li dendrites. Scientists have applied strategies to tackle these challenges. This article offers a timely review of emerging strategies. The article begins by conducting a detailed analysis of the working principles of ASSLSeBs and identifying the critical challenges that hinder practical application. Subsequently, the article presents a comprehensive summary of various strategies aimed at boosting the development of ASSLSeBs, which encompass advancements in Se cathode materials, optimization of SSEs, design of stable Li anodes, and approaches in addressing the interfacial challenge. Finally, the article offers further perspectives about promoting the application of ASSLSeBs. It highlights the need for continued research and development to overcome existing limitations. Overall, by understanding these emerging strategies, researchers could enhance the technology of LSeBs, bringing us closer to the practical realization of high‐energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙皓然完成签到 ,获得积分10
刚刚
Aniee完成签到,获得积分10
刚刚
wuhoo完成签到,获得积分10
刚刚
刘清河完成签到 ,获得积分10
1秒前
zqingqing完成签到,获得积分10
1秒前
2秒前
自然的城发布了新的文献求助10
2秒前
斯文败类应助shl采纳,获得10
2秒前
关包子发布了新的文献求助10
2秒前
3秒前
3秒前
妮儿发布了新的文献求助10
3秒前
vvvvvv完成签到,获得积分10
3秒前
平常破茧完成签到 ,获得积分10
4秒前
4秒前
4秒前
hopen发布了新的文献求助10
5秒前
母单花完成签到 ,获得积分10
5秒前
5秒前
托姆羊0710完成签到,获得积分10
5秒前
苗条映菱完成签到,获得积分10
5秒前
vvvvvv发布了新的文献求助10
6秒前
可爱的函函应助王木木采纳,获得10
6秒前
superhero完成签到,获得积分10
6秒前
SYLH应助冬天该很好采纳,获得10
6秒前
7秒前
8秒前
8秒前
FashionBoy应助Killor采纳,获得10
8秒前
典雅凌蝶完成签到,获得积分10
8秒前
8秒前
yes完成签到 ,获得积分10
9秒前
今后应助枕安采纳,获得10
9秒前
Nyxia发布了新的文献求助10
9秒前
LL发布了新的文献求助10
9秒前
无私语儿发布了新的文献求助10
9秒前
iNk应助mzry采纳,获得20
10秒前
科研通AI5应助hahah采纳,获得10
10秒前
wangx发布了新的文献求助20
10秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730