General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide

雷亚克夫 力场(虚构) 分子动力学 计算机科学 领域(数学) 统计物理学 材料科学 计算化学 物理 原子间势 化学 数学 人工智能 纯数学
作者
Andrés Jaramillo-Botero,Saber Naserifar,William A. Goddard
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:10 (4): 1426-1439 被引量:134
标识
DOI:10.1021/ct5001044
摘要

First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular compositions, interactions, and environmental conditions unexplored by experiments. That is, assuming they have been optimally prepared from a diverse training set. The trade-off has been force field engines that are functionally complex, with a large number of nonbonded and bonded analytical forms that give rise to rather large parameter search spaces. To address this problem, we have developed GARFfield (genetic algorithm-based reactive force field optimizer method), a hybrid multiobjective Pareto-optimal parameter development scheme based on genetic algorithms, hill-climbing routines and conjugate-gradient minimization. To demonstrate the capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHANG发布了新的文献求助20
刚刚
刚刚
2秒前
佳无夜完成签到,获得积分10
2秒前
高帅完成签到,获得积分10
3秒前
刘一三发布了新的文献求助10
3秒前
汽水发布了新的文献求助10
5秒前
6秒前
8秒前
思源应助阿龙采纳,获得10
9秒前
Endymion发布了新的文献求助10
10秒前
无心的平蝶应助陈晓彤采纳,获得10
10秒前
10秒前
今后应助xunoverflow采纳,获得10
11秒前
山神厘子完成签到,获得积分10
12秒前
壶户发布了新的文献求助10
12秒前
13秒前
GPTea应助药丸采纳,获得10
14秒前
14秒前
聪明新梅完成签到,获得积分10
14秒前
HY发布了新的文献求助10
15秒前
zyy发布了新的文献求助10
15秒前
顾矜应助Endymion采纳,获得10
16秒前
喜悦非笑完成签到,获得积分10
17秒前
17秒前
gc发布了新的文献求助10
17秒前
18秒前
快乐的纸飞机完成签到 ,获得积分10
18秒前
无极微光应助qqq采纳,获得20
20秒前
20秒前
ZHANG完成签到,获得积分10
21秒前
21秒前
乐乐应助阿龙采纳,获得10
23秒前
可爱的函函应助小张采纳,获得10
24秒前
Hello应助我爱背单词采纳,获得10
25秒前
26秒前
DZJ发布了新的文献求助10
27秒前
30秒前
huangxq发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777008
求助须知:如何正确求助?哪些是违规求助? 4108666
关于积分的说明 12709619
捐赠科研通 3830154
什么是DOI,文献DOI怎么找? 2112754
邀请新用户注册赠送积分活动 1136564
关于科研通互助平台的介绍 1020404