Artificial Intelligence for improving decision making in bacterial infection management: a narrative review

杠杆(统计) 临床决策支持系统 人工智能 计算机科学 范围(计算机科学) 叙述性评论 过程(计算) 风险分析(工程) 利益相关者 工作流程 决策支持系统 抗菌管理 抗生素管理 医学 管理(神学) 知识管理 临床决策 过程管理 梅德林 数据科学 管理科学 钥匙(锁) 精密医学 形势意识 有可能 知识翻译
作者
Talianu, Anisia,Fraser-Krauss, Oskar,Bolton, William,Ming, Damien,Zhu, Nina,Hernandez Perez, Bernard,Gilchrist, Mark,Holmes, Alison,Georgiou, Pantelis,Rawson, Tim
出处
期刊:Imperial College London - Spiral
标识
DOI:10.1093/jac/dkaf470
摘要

Background Development of clinical decision support systems (CDSS) has been ongoing for over 60 years, more recently leveraging technologies like artificial intelligence (AI) and machine learning (ML). Intelligent CDSS addressing different stages of the infection management process offer great advantages in interpreting complex data and guiding clinical decision-making. Objectives We outline the current applications of AI-driven CDSS across the continuum of bacterial infection management, from prevention and diagnosis to antibiotic prescribing and treatment individualisation. We discuss the main limitations hindering their translation into clinical practice, as well as opportunities to improve their development to better meet clinical needs. Methods References for this review were identified through searches of PubMed, Google Scholar, biorXiv and arXiV up to March 2025 by use of a combination of ML, decision-making and bacterial infection keywords. Key Findings AI-CDSS studies increasingly leverage multimodal EHR data, with most adopting lower 57 complexity models that perform well on structured data, particularly when supported by effective feature engineering. Despite efforts to develop accurate AI-driven systems, some of which achieve clinician-level accuracy in solving diagnostic and prescribing tasks, AI-CDSS have largely failed to integrate into clinical settings. Their adoption faces challenges related to the narrow scope of the defined medical task, failure to consider stakeholder workflow, and lack of proper evaluation frameworks. Conclusion There is a need to shift CDSS development towards a more adaptive and holistic approach that recognises the continuous nature of the decision-making process in infection management. Comprehensive AI-powered platforms that can model infection dynamics could improve antibiotic stewardship and help tackle the global health emergency of antimicrobial resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaou发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
DHMO完成签到,获得积分10
2秒前
顾矜应助叶叶采纳,获得10
3秒前
瑾进完成签到 ,获得积分10
3秒前
核桃应助科研通管家采纳,获得30
4秒前
zyx应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
zyx应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
热心树叶应助海英采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
饱满的DR完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
xiaou完成签到,获得积分10
6秒前
6秒前
6秒前
cc完成签到 ,获得积分10
6秒前
7秒前
Owen应助Arjun采纳,获得10
8秒前
蓝桉完成签到,获得积分10
10秒前
杨胜根完成签到,获得积分10
10秒前
10秒前
zzy发布了新的文献求助10
11秒前
lyh发布了新的文献求助10
11秒前
乐乐应助hilton采纳,获得50
12秒前
单纯的映真完成签到,获得积分10
12秒前
Goxan完成签到 ,获得积分10
13秒前
Jasper应助脑脊液采纳,获得10
13秒前
共享精神应助迅哥采纳,获得10
13秒前
海英发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560