材料科学
消散
粘弹性
聚合物
制作
复合材料
耗散系统
压缩性
动能
离子键合
化学物理
纳米技术
离子强度
离解(化学)
纳米复合材料
应变率
离子液体
活化能
功勋
应变能
低频
成核
化学工程
航程(航空)
玻璃化转变
熔丝制造
作者
Shilong Zhang,Jiayu Wang,Lingling Li,Xiuyang Zou,Minzhi Duan,Zheng Liu,Jiaofeng Xiong,Zheng Liu,Weizheng Li,Yan Feng
标识
DOI:10.1002/adfm.202531978
摘要
ABSTRACT Gels dissipate energy through the viscoelastic behavior of polymers within the glass transition zone. The narrow frequency range for energy dissipation limits their ability to effectively mitigate high‐velocity impacts. Here, we introduce an approach to fabricate ultrastrong and highly energy‐dissipative ionogels through the low dissociation rates of halometallate ionic liquids (ILs). This fabrication approach relies on the synergistic integration of two key components: entangled polymer domains that impart toughness, and ionic bonds derived from ILs with low dissociation rates. This synergism not only slows the kinetic motion of the matrix polymers but also enables effective reinforcement of the ionogels across a broad frequency spectrum. The highly compressible ionogels exhibited a compressive strength of 3.4 GPa at 99% strain without fragmentation. Over a wide frequency range (0.74–10 8 rad s −1 ), the ionogels demonstrate efficient energy dissipation, as indicated by their monotonically increasing loss factors tan δ (ranging from 1 to 3.5). Ionogels also exhibit high shock velocities (strain rate: 500–5000 s −1 ) impact resistance. This innovative synthesis strategy for ionogels introduces a promising avenue for the development of next‐generation impact‐resistant materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI