材料科学
电磁辐射
焦耳加热
复合材料
热的
数码产品
电子设备和系统的热管理
异质结
光电子学
导电体
电磁兼容性
吸收(声学)
碳纳米管
热导率
联轴节(管道)
电磁学
反射损耗
热传导
工程物理
反射(计算机编程)
电磁场
声子
纳米尺度
热稳定性
电磁环境
纳米技术
电子
波传播
机械工程
柔性电子器件
作者
Yuhao Feng,Mulin Qin,Jiazhuan Qin,Zhenghui Shen,Xiao Chen,Yang Li,Renchao Che
标识
DOI:10.1002/adfm.202523075
摘要
Abstract The relentless pursuit of ultra‐compact, high‐power electronics has intensified the urgent demand for advanced functional materials capable of simultaneously mitigating Joule heating and electromagnetic interference, a longstanding challenge arising from the inherent conflict between thermal and electromagnetic behaviors. Herein, an innovative 3D continuously interconnected carbon fiber network, functionalized with magneto‐dielectric heterointerfaces and enveloped within phase‐change paraffin medium is modulated, to achieve concurrent thermal regulation and efficient electromagnetic dissipation. This pioneering core‐sheath architecture delivers high latent heat storage and highway‐like phonon transport, while maintaining structural integrity without statistically significant degradation in key metrics even under harsh long‐term thermal shock. More strikingly, core‐sheath heterostructures synergistically integrate a conductive framework with a magnetic coupling network, generating abundant heterojunction interfaces and tailored electron transport pathways that enable an ultralow reflection loss and a broad effective absorption bandwidth. Through cutting‐edge off‐axis electron holography, the magnetic–dielectric coupling interactions are directly visualized and unravel the nanoscale electromagnetic wave absorption mechanism. Real‐world demonstrations confirm the great potential of this solution in enabling co‐optimized thermal management and electromagnetic compatibility for next‐generation high‐power electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI