Rethinking Retrieval-Augmented Generation for Medicine: A Large-Scale, Systematic Expert Evaluation and Practical Insights

计算机科学 选择(遗传算法) 管道(软件) 钥匙(锁) 完备性(序理论) 数据科学 召回 语言模型 人工智能 循证医学 专家系统 医学知识 简单(哲学) 机器学习 模棱两可 精确性和召回率 情报检索 风险分析(工程) 梅德林 多样性(控制论) 主题专家
作者
Kim, Hyunjae,Sohn, Jiwoong,Gilson, Aidan,Cochran-Caggiano, Nicholas,Applebaum, Serina,Jin, Heeju,Park, Seihee,Park, Yujin,Park Ji-Yeong,Choi Seoyoung,Contreras, Brittany Alexandra Herrera,Huang, Thomas,Yun Jae-Hoon,Wei, Ethan F.,Jiang Roy,Colucci, Leah,Lai, Eric,Dave, Amisha,Guo Tuo,Singer, Maxwell B.
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2511.06738
摘要

Large language models (LLMs) are transforming the landscape of medicine, yet two fundamental challenges persist: keeping up with rapidly evolving medical knowledge and providing verifiable, evidence-grounded reasoning. Retrieval-augmented generation (RAG) has been widely adopted to address these limitations by supplementing model outputs with retrieved evidence. However, whether RAG reliably achieves these goals remains unclear. Here, we present the most comprehensive expert evaluation of RAG in medicine to date. Eighteen medical experts contributed a total of 80,502 annotations, assessing 800 model outputs generated by GPT-4o and Llama-3.1-8B across 200 real-world patient and USMLE-style queries. We systematically decomposed the RAG pipeline into three components: (i) evidence retrieval (relevance of retrieved passages), (ii) evidence selection (accuracy of evidence usage), and (iii) response generation (factuality and completeness of outputs). Contrary to expectation, standard RAG often degraded performance: only 22% of top-16 passages were relevant, evidence selection remained weak (precision 41-43%, recall 27-49%), and factuality and completeness dropped by up to 6% and 5%, respectively, compared with non-RAG variants. Retrieval and evidence selection remain key failure points for the model, contributing to the overall performance drop. We further show that simple yet effective strategies, including evidence filtering and query reformulation, substantially mitigate these issues, improving performance on MedMCQA and MedXpertQA by up to 12% and 8.2%, respectively. These findings call for re-examining RAG's role in medicine and highlight the importance of stage-aware evaluation and deliberate system design for reliable medical LLM applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
Umar发布了新的文献求助10
3秒前
4秒前
4秒前
羡鱼发布了新的文献求助10
4秒前
chenjintt发布了新的文献求助10
5秒前
充电宝应助ocean采纳,获得10
5秒前
轻舟发布了新的文献求助10
5秒前
天天快乐应助读者采纳,获得10
5秒前
6秒前
在水一方应助调皮的背包采纳,获得10
6秒前
GGL发布了新的文献求助10
6秒前
6秒前
英俊的铭应助白菜也挺贵采纳,获得10
6秒前
7秒前
zzzyyyppp发布了新的文献求助10
7秒前
7秒前
huangdinghuang完成签到,获得积分10
7秒前
Survivor完成签到,获得积分10
8秒前
8秒前
二立完成签到,获得积分20
8秒前
蒋宏宇发布了新的文献求助30
9秒前
ange完成签到,获得积分10
9秒前
追寻荔枝发布了新的文献求助10
9秒前
重山完成签到,获得积分10
9秒前
Flames发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
丘比特应助pp采纳,获得10
11秒前
11秒前
乐正广山发布了新的文献求助10
11秒前
开心仙人掌完成签到,获得积分10
11秒前
12秒前
缥缈的又亦完成签到,获得积分10
12秒前
EWFDSC发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263795
求助须知:如何正确求助?哪些是违规求助? 4424197
关于积分的说明 13772509
捐赠科研通 4299277
什么是DOI,文献DOI怎么找? 2358996
邀请新用户注册赠送积分活动 1355293
关于科研通互助平台的介绍 1316528