A Physics-Guided Symbolic Regression Framework for Efficient and Interpretable Sand Constitutive Modeling

岩土工程 回归分析 本构方程 回归 地质学 计算机科学 工程类 数学 统计 结构工程 机器学习 有限元法
作者
Yi Zhu,Su Chen,Xiaojun Li
出处
期刊:Canadian Geotechnical Journal [NRC Research Press]
标识
DOI:10.1139/cgj-2025-0201
摘要

Data-driven constitutive modeling for geomaterials encounters significant challenges in achieving a balance among interpretability, physical consistency, and computational efficiency. Traditional symbolic regression often struggles with extensive search spaces, slow convergence rates, and insufficient physical constraints, which limits its applicability to complex granular materials such as sands. In this context, we propose a framework for knowledge-based physically guided symbolic regression (KB-phgSR), which seamlessly integrates classical constitutive models with data-driven optimization techniques. The framework employs a two-stage approach: initially distilling Pareto-optimal equations from established physical models to establish physically consistent solutions; subsequently refining these equations using experimental data while ensuring dimensional balance and adherence to mechanical boundary conditions. Validated against triaxial tests conducted on Toyoura and Ottawa sands under various drainage conditions, KB-phgSR demonstrates enhanced convergence speed and robustness in capturing the intricate behaviors of sand. The optimized equations exhibit both high accuracy and interpretability while conforming to fundamental elastoplastic principles. By effectively combining physics-based priors with data-driven discovery methods, this framework advances constitutive modeling towards improved generalizability and engineering efficacy, positioning it as a paradigm-shifting tool with transformative potential in geomechanics and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
唠叨的天亦完成签到 ,获得积分10
1秒前
sure完成签到 ,获得积分10
2秒前
4秒前
机智咖啡豆完成签到 ,获得积分10
4秒前
wuda完成签到,获得积分10
5秒前
5秒前
HH完成签到,获得积分10
6秒前
蜀山刀客完成签到,获得积分10
7秒前
秦时明月完成签到,获得积分10
8秒前
高兴的垣发布了新的文献求助10
9秒前
11秒前
ymmmaomao23完成签到,获得积分10
11秒前
上杉绘梨衣完成签到,获得积分10
11秒前
领导范儿应助sunyanghu369采纳,获得10
12秒前
李健的粉丝团团长应助dudu采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
14秒前
hjyylab应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得30
14秒前
秘小先儿应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
秘小先儿应助科研通管家采纳,获得10
15秒前
FashionBoy应助荡秋千的猴子采纳,获得10
15秒前
16秒前
852应助快乐小熊猫采纳,获得10
16秒前
满意人英完成签到,获得积分10
16秒前
一杯甜酒完成签到,获得积分10
17秒前
WZ0904完成签到 ,获得积分10
18秒前
可达鸭完成签到 ,获得积分10
18秒前
张雨露完成签到 ,获得积分10
19秒前
梅川秋裤完成签到,获得积分10
19秒前
20秒前
erhao完成签到 ,获得积分10
21秒前
22秒前
耍酷鼠标完成签到 ,获得积分0
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030355
求助须知:如何正确求助?哪些是违规求助? 3569113
关于积分的说明 11356691
捐赠科研通 3299693
什么是DOI,文献DOI怎么找? 1816873
邀请新用户注册赠送积分活动 890973
科研通“疑难数据库(出版商)”最低求助积分说明 813978