亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structure‐Enhanced Graph Learning Approach for Traffic Flow and Density Forecasting

计算机科学 图形 人工智能 机器学习 计量经济学 理论计算机科学 数学
作者
Phu Pham
出处
期刊:Journal of Forecasting [Wiley]
标识
DOI:10.1002/for.70012
摘要

ABSTRACT The rapid expansion of Internet infrastructure and artificial intelligence (AI) has significantly advanced intelligent transportation systems (ITS), which are considered as essential for automating traffic monitoring and management in smart cities. Among ITS applications, traffic flow and density prediction are considered as important problem for optimizing transportation planning and reducing congestion. In recent years, deep learning models, particularly recurrent neural networks (RNNs) and graph neural networks (GNNs), have been widely utilized for traffic forecasting. These models can support to effectively capture temporal and spatial dependencies in traffic data, as a result enabling more accurate forecasting. Despite advancements, recently proposed RNN‐GNN‐based forecasting models still face challenges related to the capability of preserving rich structural and topological features from traffic networks. The complex spatial dependencies inherent in road connections and vehicle movement patterns are often underrepresented; therefore, limiting the forecasting accuracy. To address these limitations, in this paper, we propose SGL4TF, a structure‐enhanced graph learning model that integrates graph convolutional networks (GCN) with a sequence‐to‐sequence (seq2seq) framework. This architecture enhances the ability to jointly model spatial relationships and long‐term temporal dependencies, hence can lead to more precise traffic predictions. Our approach introduces a deeper graph‐structural learning mechanism using nonlinear transformations within GNN layers, which can effectively assist to improve structural feature extraction while mitigating over‐smoothing issues. The seq2seq component further refines temporal correlations, enabling long‐term traffic state predictions. Extensive experiments on real‐world datasets demonstrate our proposed SGL4TF model's superior performance over state‐of‐the‐art traffic forecasting techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
龚幻梦发布了新的文献求助10
3秒前
位青完成签到,获得积分10
3秒前
Lliu完成签到,获得积分10
4秒前
4秒前
cccc4869发布了新的文献求助10
5秒前
爆米花应助jojo采纳,获得10
6秒前
鹏虫虫发布了新的文献求助10
10秒前
12秒前
jojo发布了新的文献求助10
17秒前
暴走小面包完成签到 ,获得积分10
18秒前
22秒前
哈尔滨完成签到 ,获得积分20
23秒前
某某发布了新的文献求助10
26秒前
制冷剂完成签到 ,获得积分10
29秒前
33秒前
科研通AI6应助某某采纳,获得10
34秒前
鹏虫虫发布了新的文献求助10
39秒前
Ashao完成签到 ,获得积分10
41秒前
41秒前
FashionBoy应助现代初珍采纳,获得10
42秒前
47秒前
freq完成签到 ,获得积分10
47秒前
伯云完成签到,获得积分10
47秒前
49秒前
Double发布了新的文献求助10
50秒前
luck完成签到,获得积分10
51秒前
ceeray23发布了新的文献求助20
51秒前
爆米花应助TK采纳,获得10
52秒前
现代初珍发布了新的文献求助10
54秒前
luck发布了新的文献求助20
55秒前
59秒前
1分钟前
乐乐应助某某采纳,获得30
1分钟前
山野发布了新的文献求助10
1分钟前
Lunatic发布了新的文献求助10
1分钟前
科研通AI6应助飞快的冬天采纳,获得10
1分钟前
科研通AI6应助zhu采纳,获得10
1分钟前
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438344
求助须知:如何正确求助?哪些是违规求助? 4549600
关于积分的说明 14220652
捐赠科研通 4470256
什么是DOI,文献DOI怎么找? 2449799
邀请新用户注册赠送积分活动 1440739
关于科研通互助平台的介绍 1417053