An intelligent screener for mild cognitive impairment via integrated eye-tracking and the digital clock drawing test

考试(生物学) 认知障碍 眼动 跟踪(教育) 认知 数字钟 眼球运动 计算机科学 心理学 认知心理学 人工智能 神经科学 电信 抖动 教育学 生物 古生物学
作者
Jinyu Chen,Chenxi Hao,Xiaonan Zhang,Wencheng Zhu,Sijia Hou,Junpin An,Wenjing Bao,Zhigang Wang,Shuning Du,Qiuyan Wang,Guowen Min,Yarong Zhao,Yang Li
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:108 (1_suppl): S132-S140
标识
DOI:10.1177/13872877251350101
摘要

Background Mild cognitive impairment (MCI) is a risk factor for dementia, and early screening is crucial for patient prognosis. Objective To construct an intelligent family screening model for MCI based on eye tracking (ET) and digital clock drawing tests (dCDT), to provide a simple and accurate screening tool for MCI. Methods This study included 618 cognitively normal participants and 179 patients with MCI, among whom demographic information and metrics from ET and dCDT were collected. One-way analysis of variance was applied to screen all variables (p < 0.05). Different feature sets constructed based on logistic regression and five machine learning methods (random forests, multilayer perceptron, support vector machines, extreme gradient boosting trees, and convolutional neural networks) were used to construct 36 MCI screening tools. Finally, the diagnostic efficacy of the models was evaluated based on the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and specificity. Results Multimodal features, namely demographics, dCDT, and ET, showed superior performance compared to models based on unimodal behavioral data with or without demographics. Among all algorithms, the random forest model based on all significant features performed the best, with an AUROC of 0.947. Conclusions Herein, we integrated demographic information, eye tracking, and digital drawing clock tests to construct an MCI screening model that yielded superior classification performance. As a potential intelligent screening tool for MCI in the community, we aim to further build a multicenter external validation study to improve the model's generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
04liqian完成签到,获得积分10
1秒前
桔子完成签到,获得积分10
1秒前
1秒前
aaaasss完成签到,获得积分10
2秒前
杨yy发布了新的文献求助10
3秒前
落寞白曼完成签到,获得积分10
4秒前
钙离子完成签到,获得积分10
4秒前
玲玲玲发布了新的文献求助10
4秒前
幼儿园老大完成签到,获得积分10
5秒前
Akim应助tguczf采纳,获得10
5秒前
hyf完成签到,获得积分20
5秒前
7秒前
ding应助twang93采纳,获得10
8秒前
斯文败类应助wenbo采纳,获得10
9秒前
rose发布了新的文献求助10
10秒前
木夏发布了新的文献求助10
11秒前
勤劳薯条完成签到 ,获得积分20
13秒前
15秒前
元谷雪发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
20秒前
lx完成签到,获得积分10
21秒前
21秒前
yw完成签到,获得积分10
21秒前
21秒前
雨田发布了新的文献求助10
22秒前
22秒前
twang93完成签到,获得积分10
23秒前
舒心盼曼完成签到,获得积分20
23秒前
搜集达人应助Zw采纳,获得10
23秒前
24秒前
李爱国应助多多采纳,获得100
24秒前
wenbo发布了新的文献求助10
25秒前
顺鑫发布了新的文献求助10
25秒前
酷波er应助LLC采纳,获得10
26秒前
Namj发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867