亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A surrogate model based on parametric neural network solvers for laminar flows around aerofoils

作者
Wenbo Cao,Shixiang Tang,Qi Ma,Wanli Ouyang,Weiwei Zhang
出处
期刊:Engineering Applications of Computational Fluid Mechanics [Informa]
卷期号:19 (1)
标识
DOI:10.1080/19942060.2025.2559110
摘要

Physics-informed neural networks (PINNs) have emerged as a popular approach for solving forward, inverse, and parametric problems involving partial differential equations. However, their performance is often limited by ill-conditioning in optimization. To address this, time-stepping-oriented neural network (TSONN) reformulate the optimization process into a sequence of well-conditioned sub-problems, offering improved robustness and efficiency for complex scenarios. This paper presents a solver for laminar flow around aerofoils based on TSONN, validated across various test cases. Specifically, the solver achieves mean relative errors of approximately 4.1% for lift coefficients and 2.2% for drag coefficients. Furthermore, this paper extends the solver to parametric problems involving flow conditions and aerofoils shapes, covering nearly all laminar flow scenarios in engineering. The parametric solver solves all laminar flows within the parameter space in just 4.6 day, at approximately 40 times the computational cost of solving a single flow. The model training involves hundreds of millions of flow conditions and aerofoil shapes, ultimately yielding a surrogate model with strong generalization capability that does not require labelled data. The surrogate model achieves average errors of 4.4% for lift coefficients and 1.7% for drag coefficients, highlighting its high generalizability and cost-effectiveness for high-dimensional parametric problems and surrogate modelling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
11秒前
mmmooo发布了新的文献求助10
34秒前
46秒前
46秒前
Jello发布了新的文献求助10
51秒前
vampire发布了新的文献求助10
52秒前
钉钉完成签到 ,获得积分10
52秒前
52秒前
55秒前
mmmooo完成签到,获得积分10
56秒前
vampire完成签到,获得积分10
1分钟前
1分钟前
哭泣朝雪发布了新的文献求助20
1分钟前
小郭完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
奋斗人雄完成签到,获得积分10
2分钟前
2分钟前
hodi完成签到,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
搞什么科研完成签到,获得积分20
2分钟前
丘比特应助ceeray23采纳,获得20
2分钟前
慕青应助哭泣朝雪采纳,获得10
2分钟前
研友_VZG7GZ应助xixi采纳,获得10
2分钟前
以七完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
clhoxvpze完成签到 ,获得积分10
3分钟前
liao完成签到 ,获得积分10
3分钟前
21145077发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
DBP87弹完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509468
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489671
捐赠科研通 4539142
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469759
关于科研通互助平台的介绍 1441996