Graph with Residue-Based Cross-Modal Framework Enhances Cell Function-Related Protein Properties Prediction

情态动词 残留物(化学) 图形 计算机科学 生物系统 算法 数学 计算生物学 化学 生物化学 理论计算机科学 生物 高分子化学
作者
Weiping Gou,Yang Tan,Chen Liu,Mingchen Li,Guisheng Fan,Huiqun Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00856
摘要

Accurate prediction of protein properties that influence cellular functions is crucial for drug design, disease research, and guiding biological wet-lab experiments. Previous methods primarily relied on physicochemical property analysis and homologous sequence alignment, lacking end-to-end solutions. In recent years, Protein Language Models (PLMs) pretrained on large-scale residue sequences have shown impressive results in protein engineering. However, protein functions are highly dependent on complex spatial structures. Fine-tuning PLMs either by relying solely on sequence information or by incorporating structure-aware features within language modeling methods has not led to substantial improvements in predictive performance. To address this, we propose a novel Graph with Residues (GwR)-based cross-modal framework. GwR employs a Layer-Aggregated Graph Convolutional Network (LA-GCN) and a Geometric Vector Perceptron-Graph Neural Network (GVP-GNN) to perform representation learning on two complementary residue graphs: one is based on PLMs and self-attention mechanisms to capture semantic features and dynamic residue associations from sequences, and the other incorporates structure-aware sequences and spatial topology to describe the structural characteristics of proteins. We apply GwR to four protein property prediction tasks, including subcellular localization, solubility, metal ion binding, and thermal stability and conduct extensive comparisons with PLMs. Experimental results demonstrate that GwR consistently outperforms existing methods in terms of both predictive performance and training efficiency. Furthermore, GwR exhibits superior or comparable performance when evaluated against multiple state-of-the-art deep learning models and parameter-efficient fine-tuning strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
penzer完成签到 ,获得积分10
刚刚
2滴水完成签到,获得积分10
1秒前
三七二一完成签到,获得积分10
1秒前
九月完成签到 ,获得积分10
1秒前
3秒前
4秒前
风清扬发布了新的文献求助10
7秒前
guozizi应助科研通管家采纳,获得30
7秒前
guozizi应助科研通管家采纳,获得30
7秒前
roger完成签到 ,获得积分10
8秒前
功不唐捐完成签到,获得积分10
8秒前
9秒前
hqhbj77完成签到,获得积分10
11秒前
SOL完成签到,获得积分10
11秒前
安静完成签到,获得积分20
13秒前
小南完成签到,获得积分10
14秒前
柒柒球完成签到,获得积分10
14秒前
yiryir完成签到 ,获得积分10
14秒前
平常星星完成签到 ,获得积分10
15秒前
15秒前
APS完成签到,获得积分10
15秒前
111哩完成签到 ,获得积分10
16秒前
windsea完成签到,获得积分0
16秒前
骑着蚂蚁追大象完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
灵巧的以亦完成签到,获得积分10
18秒前
佳jia完成签到,获得积分10
18秒前
19秒前
图图完成签到,获得积分10
20秒前
科目三应助warmer采纳,获得10
20秒前
Sunny发布了新的文献求助10
20秒前
俭朴从安完成签到,获得积分10
21秒前
pp完成签到,获得积分10
21秒前
lililu完成签到,获得积分10
21秒前
mjlink完成签到,获得积分10
22秒前
落雪慕卿颜完成签到,获得积分10
22秒前
perovskite完成签到,获得积分10
25秒前
星星会开花完成签到,获得积分10
25秒前
开心完成签到,获得积分10
25秒前
机智大有完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945978
求助须知:如何正确求助?哪些是违规求助? 4210295
关于积分的说明 13086912
捐赠科研通 3990721
什么是DOI,文献DOI怎么找? 2184822
邀请新用户注册赠送积分活动 1200196
关于科研通互助平台的介绍 1113855