光子晶体
光电子学
调制(音乐)
材料科学
Crystal(编程语言)
电子
纳米技术
物理
声学
计算机科学
量子力学
程序设计语言
作者
Yuxin Zhao,Wei Wang,Jiafeng Geng,Wang Juan,Weibo Hua
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-07-31
卷期号:25 (32): 12369-12378
标识
DOI:10.1021/acs.nanolett.5c03015
摘要
Au nanoparticle-modified WO3 inverse opal photonic crystals (Au/WO3 IOPCs) exhibit exceptional NO2 sensing via synergistic hierarchical porosity, Au catalytic activity, and plasmonic hot electrons. A pioneering multimodal environmental operando microspectroscopy platform integrates photoconductive AFM, Kelvin probe microscopy, and in situ DRIFTS with computational modeling. This approach achieves atomic-scale spatiotemporal resolution of interfacial dynamics, directly revealing: (i) plasmonically generated hot electrons fluxing across the Au/WO3 interface to activate NO2 adsorption and modulate electron depletion layers under illumination and (ii) dynamic Schottky barrier reconfiguration at electrode junctions that quantitatively correlates environmental stimuli (gas concentration, photon flux, temperature) with resistance evolution. By bridging nanoscale charge transfer to device-level responses, the study establishes a transformative methodology for plasmon-enhanced photonic sensors while providing fundamental insights into interfacial processes, enabling knowledge-driven development of high-precision detectors with ultimate sensitivity and selectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI