Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression

签名(拓扑) 鉴定(生物学) 计算生物学 疾病 脂肪肝 医学 基因 基因签名 生物 遗传学 生物信息学 内科学 数学 基因表达 植物 几何学
作者
Seungmin Oh,Yang-Hyun Baek,Sung‐Ju Jung,Sumin Yoon,Byeonggeun Kang,Si-Nae Han,Gaeul Park,Je Yeong Ko,Songhee Han,Jin–Sook Jeong,Jin-Han Cho,Young-Hoon Roh,Sungwook Lee,Gi-Bok Choi,Yong Sun Lee,Won Kim,Rho Hyun Seong,Jong Hoon Park,Yeon-Su Lee,Kyung Hyun Yoo
出处
期刊:Clinical and molecular hepatology [The Korean Association for the Study of the Liver]
卷期号:30 (2): 247-262 被引量:3
标识
DOI:10.3350/cmh.2023.0449
摘要

Background/Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.Methods: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.Results: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.Conclusions: We identified a signature gene set (i.e., <i>CAPG, HYAL3, WIPI1, TREM2, SPP1</i>, and <i>RNASE6</i>) with strong potential as a panel of diagnostic genes of MASLD-associated disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
魁拔蛮吉完成签到 ,获得积分0
3秒前
xiaobai123456发布了新的文献求助10
6秒前
gzhoax应助budingman采纳,获得30
10秒前
Easonluo8完成签到,获得积分10
16秒前
打打应助阿星捌采纳,获得10
19秒前
月亮完成签到 ,获得积分10
26秒前
遍地捡糖不要钱完成签到 ,获得积分10
26秒前
28秒前
专一的金鱼完成签到,获得积分10
31秒前
32秒前
阿星捌发布了新的文献求助10
33秒前
稳重的鑫鹏完成签到 ,获得积分10
36秒前
36秒前
dddyrrrrr完成签到 ,获得积分10
36秒前
37秒前
英姑应助浩川采纳,获得30
39秒前
积极可燕发布了新的文献求助10
41秒前
mxgmxg完成签到,获得积分20
41秒前
ze发布了新的文献求助10
43秒前
六六六完成签到 ,获得积分10
47秒前
54秒前
完美世界应助ze采纳,获得10
54秒前
Criminology34发布了新的文献求助500
56秒前
jyy发布了新的文献求助200
58秒前
温衡完成签到 ,获得积分10
58秒前
高贵rong发布了新的文献求助10
58秒前
59秒前
Iris完成签到 ,获得积分10
1分钟前
静静静完成签到,获得积分10
1分钟前
汤姆的肋骨完成签到 ,获得积分10
1分钟前
ddz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李健应助zy采纳,获得10
1分钟前
weiwei发布了新的文献求助10
1分钟前
dd发布了新的文献求助10
1分钟前
一个左正蹬完成签到,获得积分10
1分钟前
李爱国应助努力的小韩采纳,获得10
1分钟前
xiaobai123456发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5857440
求助须知:如何正确求助?哪些是违规求助? 6330748
关于积分的说明 15636452
捐赠科研通 4971726
什么是DOI,文献DOI怎么找? 2681610
邀请新用户注册赠送积分活动 1625600
关于科研通互助平台的介绍 1582590