Optimisation-Enabled Transfer Learning Framework for Stock Market Prediction

学习迁移 计算机科学 股票市场 库存(枪支) 传输(计算) 机器学习 人工智能 机械工程 古生物学 并行计算 工程类 生物
作者
Pankaj Rambhau Patil,Deepa Parasar,Shrikant Charhate
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649224500138
摘要

Stock market prediction is a vital task with high attention for gaining attractive profits with proper decisions to invest. Predicting the stock market is becoming a major challenge nowadays due to chaotic data, non-stationary data, and blaring data. Hence, it’s challenging for investors to invest money to make profits. Many techniques are developed to predict stock market trends, but each differs based on time and year. In this paper, hybridised optimisation algorithm, namely the proposed Gannet Ladybug Beetle Optimisation (GLBO), is used for training Transfer Learning (TL), which considers Convolutional Neural Network-enabled Long Short-Term Memory (CNN-enabled LSTM). This TL is responsible for predicting the stock market from augmented data. Here, the stock market dataset of two companies is used as input time series data. Moreover, many features are extracted from those input data and then from those features, necessary features are selected based on Motyka similarity. The bootstrap method is used in this paper for data augmentation. Also, GLBO is hybridised with Gannet Optimisation Algorithm (GOA) along Ladybug Beetle Optimisation (LBO) algorithm. Furthermore, the proposed model is verified for its performance capability based on three metrics, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), as well as Mean Absolute Percentage Error (MAPE) with values of 5.8%, 24.1%, and 78.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旷野完成签到,获得积分10
1秒前
ruoyu111完成签到,获得积分10
2秒前
ChrisKim完成签到,获得积分10
4秒前
5秒前
秋半梦完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
阳光的卿关注了科研通微信公众号
9秒前
LH完成签到,获得积分10
10秒前
AAA完成签到,获得积分10
10秒前
科研通AI5应助cjjd采纳,获得10
12秒前
wuxunxun2015发布了新的文献求助10
13秒前
伏城发布了新的文献求助30
13秒前
marco完成签到 ,获得积分10
13秒前
弹指一挥间完成签到 ,获得积分10
17秒前
李浩然完成签到,获得积分10
20秒前
苏桑焉完成签到 ,获得积分10
21秒前
23秒前
小马甲应助叶长亭采纳,获得10
24秒前
25秒前
繁荣的忆文完成签到,获得积分10
26秒前
cjjd完成签到,获得积分10
26秒前
26秒前
李浩然发布了新的文献求助10
28秒前
28秒前
ll发布了新的文献求助10
29秒前
cjjd发布了新的文献求助10
31秒前
31秒前
cmicha完成签到 ,获得积分10
34秒前
石火发布了新的文献求助10
34秒前
37秒前
Owen应助cmicha采纳,获得10
38秒前
Yami完成签到 ,获得积分10
40秒前
可爱的函函应助打我呀采纳,获得10
42秒前
42秒前
科研通AI5应助李浩然采纳,获得10
44秒前
崔宁宁完成签到 ,获得积分10
45秒前
45秒前
汤圆完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751