TrialEmulation: An R Package to Emulate Target Trials for Causal Analysis of Observational Time-to-event Data

观察研究 因果分析 事件(粒子物理) 计算机科学 数据科学 风险分析(工程) 统计 医学 数学 物理 量子力学
作者
Li Su,Roonak Rezvani,Shaun R. Seaman,Carol Starr,Isaac Gravestock
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.12083
摘要

Randomised controlled trials (RCTs) are regarded as the gold standard for estimating causal treatment effects on health outcomes. However, RCTs are not always feasible, because of time, budget or ethical constraints. Observational data such as those from electronic health records (EHRs) offer an alternative way to estimate the causal effects of treatments. Recently, the `target trial emulation' framework was proposed by Hernan and Robins (2016) to provide a formal structure for estimating causal treatment effects from observational data. To promote more widespread implementation of target trial emulation in practice, we develop the R package TrialEmulation to emulate a sequence of target trials using observational time-to-event data, where individuals who start to receive treatment and those who have not been on the treatment at the baseline of the emulated trials are compared in terms of their risks of an outcome event. Specifically, TrialEmulation provides (1) data preparation for emulating a sequence of target trials, (2) calculation of the inverse probability of treatment and censoring weights to handle treatment switching and dependent censoring, (3) fitting of marginal structural models for the time-to-event outcome given baseline covariates, (4) estimation and inference of marginal intention to treat and per-protocol effects of the treatment in terms of marginal risk differences between treated and untreated for a user-specified target trial population. In particular, TrialEmulation can accommodate large data sets (e.g., from EHRs) within memory constraints of R by processing data in chunks and applying case-control sampling. We demonstrate the functionality of TrialEmulation using a simulated data set that mimics typical observational time-to-event data in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮蛙完成签到,获得积分10
刚刚
1秒前
小许完成签到 ,获得积分10
1秒前
水薄荷完成签到,获得积分10
2秒前
刀疤尤金发布了新的文献求助20
2秒前
liuqizong123完成签到,获得积分10
3秒前
duoduo完成签到,获得积分10
3秒前
灰太狼完成签到,获得积分10
3秒前
程程完成签到,获得积分10
3秒前
4秒前
舒适映寒完成签到,获得积分10
5秒前
smin完成签到,获得积分10
5秒前
平常的雁凡完成签到,获得积分20
6秒前
儒雅的善愁完成签到,获得积分10
7秒前
可靠的千凝完成签到 ,获得积分10
7秒前
米粥饭完成签到,获得积分10
8秒前
Rasolie完成签到 ,获得积分10
9秒前
不系舟完成签到,获得积分10
9秒前
闫132完成签到,获得积分10
9秒前
10秒前
科研肥料完成签到,获得积分10
10秒前
峰成完成签到 ,获得积分10
11秒前
科研通AI5应助小黑超努力采纳,获得10
11秒前
SunnyHayes完成签到,获得积分10
12秒前
GongSyi完成签到 ,获得积分10
12秒前
Loooong完成签到,获得积分0
12秒前
12秒前
小飞碟完成签到,获得积分10
13秒前
白桃战士完成签到,获得积分10
14秒前
gooster完成签到,获得积分10
16秒前
端庄秋蝶完成签到 ,获得积分10
16秒前
xixihaha完成签到,获得积分10
17秒前
星辉完成签到,获得积分10
18秒前
上官若男应助LPPP采纳,获得10
18秒前
shi发布了新的文献求助10
18秒前
611牛马完成签到,获得积分10
18秒前
沟通亿心完成签到,获得积分10
18秒前
军医可寒完成签到,获得积分10
20秒前
绿波电龙完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4742787
求助须知:如何正确求助?哪些是违规求助? 4092304
关于积分的说明 12657950
捐赠科研通 3803531
什么是DOI,文献DOI怎么找? 2099785
邀请新用户注册赠送积分活动 1125232
关于科研通互助平台的介绍 1001568