Spatial-temporal differentiation characteristics and driving factors of China's energy eco-efficiency based on geographical detector model

解释力 中国 驱动因素 地理 经济地理学 城市化 生态学 经济 经济增长 生物 认识论 哲学 考古
作者
Wensheng Wang,Yasi Yang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:434: 140153-140153 被引量:12
标识
DOI:10.1016/j.jclepro.2023.140153
摘要

As China is striving to build a modernization in which people and nature live in harmony, evaluating energy eco-efficiency (EEE) is an important part of achieving a balanced development of socio-economic construction and ecological civilization. From the perspective of the “energy-economy-ecology-society” system, this study included social welfare elements and PM2.5 into the EEE evaluation index, and the EEE of 30 provinces in China from 2000 to 2019 were examined more comprehensively. The distribution differences and sources of EEE were measured by Trend analysis and the Dagum Gini coefficient. A unique analytical method that reveals the drivers of spatial heterogeneity, the Geographical Detector model (Geodetector), was used to better account for the explanatory power of the drivers and their interactions. The results show that China's EEE has a weak “N"-shaped trend in time series, with significant spatial heterogeneity, and the contribution of this imbalance is ranked as inter-regional (39.83%) > hypervariable density (31.95%) > inter-regional (28.22%). The core factors that dominate the spatial-temporal differentiation in the East, Center and West are energy consumption structure (0.688), environmental regulation (0.414), and the level of urbanization (0.548), respectively. The factor interactions are all greater than the explanatory power of factor independent effects on EEE divergence, and the strongest interaction is between Environmental Regulation and Level of educational development in 2010(0.91). The interactions have regional characteristics, and targeted EEE enhancement paths should be selected for different regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pharmstudent完成签到,获得积分10
刚刚
852应助tangyuan采纳,获得10
刚刚
鱼雷完成签到 ,获得积分10
1秒前
leeee完成签到,获得积分10
1秒前
2秒前
科研通AI5应助asymmetric糖采纳,获得10
2秒前
2秒前
芸沐发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
斯文芷荷发布了新的文献求助10
4秒前
小值钱完成签到,获得积分10
4秒前
刘能完成签到,获得积分10
4秒前
科研通AI5应助大气萤采纳,获得10
5秒前
5秒前
kylin完成签到 ,获得积分10
5秒前
春鸮鸟完成签到 ,获得积分10
5秒前
6秒前
6秒前
程程发布了新的文献求助10
6秒前
wangx发布了新的文献求助10
7秒前
7秒前
无涯尔完成签到,获得积分10
7秒前
科学家发布了新的文献求助10
8秒前
1908679476发布了新的文献求助10
8秒前
8秒前
孙颂尧发布了新的文献求助10
8秒前
8秒前
封尘逸动完成签到,获得积分10
8秒前
传奇3应助斯文念波采纳,获得10
9秒前
肥鱼不会飞完成签到,获得积分10
9秒前
大模型应助卡瑞尔999采纳,获得10
9秒前
9秒前
9秒前
9秒前
敬老院N号发布了新的文献求助30
9秒前
大模型应助冷静晓霜采纳,获得10
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747