Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier BV]
卷期号:152: 108080-108080 被引量:4
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ikram发布了新的文献求助10
3秒前
WalkToSky完成签到,获得积分10
4秒前
6秒前
10秒前
11秒前
15秒前
加快步伐发布了新的文献求助10
15秒前
孤独聪健完成签到,获得积分10
16秒前
归尘应助27小天使采纳,获得30
16秒前
17秒前
fangyifang发布了新的文献求助10
18秒前
18秒前
外向青筠完成签到,获得积分10
20秒前
科研通AI2S应助kk采纳,获得10
21秒前
大大的DY完成签到 ,获得积分10
22秒前
王羲之完成签到,获得积分10
23秒前
23秒前
24秒前
粥粥发布了新的文献求助10
27秒前
黑妖发布了新的文献求助10
27秒前
王羲之发布了新的文献求助200
27秒前
28秒前
萝卜干发布了新的文献求助10
30秒前
烟花应助Ikram采纳,获得10
31秒前
糖宝完成签到 ,获得积分10
33秒前
kk发布了新的文献求助10
35秒前
36秒前
隐形曼青应助东东采纳,获得10
37秒前
迷茫小书虫完成签到,获得积分10
38秒前
pantene完成签到 ,获得积分10
38秒前
binbin完成签到,获得积分20
39秒前
diguohu完成签到,获得积分10
39秒前
犹豫新梅发布了新的文献求助30
40秒前
42秒前
ding应助Mingchun采纳,获得10
42秒前
43秒前
小洁完成签到 ,获得积分10
44秒前
可爱沛蓝完成签到 ,获得积分10
44秒前
45秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304