PDFF‐CNN: An attention‐guided dynamic multi‐orientation feature fusion method for gestational age prediction on imbalanced fetal brain MRI dataset

特征(语言学) 人工智能 方向(向量空间) 胎龄 模式识别(心理学) 计算机科学 神经影像学 磁共振成像 医学影像学 医学 放射科 心理学 神经科学 怀孕 数学 哲学 生物 遗传学 语言学 几何学
作者
Ziteng Feng,Ran Zhou,Wei Xia,Siru Wang,Yang Liu,Zhongwei Huang,Haitao Gan
出处
期刊:Medical Physics [Wiley]
卷期号:51 (5): 3480-3494 被引量:9
标识
DOI:10.1002/mp.16875
摘要

Abstract Background Fetal brain magnetic resonance imaging (MRI)‐based gestational age prediction has been widely used to characterize normal fetal brain development and diagnose congenital brain malformations. Purpose The uncertainty of fetal position and external interference leads to variable localization and direction of the fetal brain. In addition, pregnant women typically concentrate on receiving MRI scans during the fetal anomaly scanning week, leading to an imbalanced distribution of fetal brain MRI data. The above‐mentioned problems pose great challenges for deep learning‐based fetal brain MRI gestational age prediction. Methods In this study, a pyramid squeeze attention (PSA)‐guided dynamic feature fusion CNN (PDFF‐CNN) is proposed to robustly predict gestational ages from fetal brain MRI images on an imbalanced dataset. PDFF‐CNN contains four components: transformation module, feature extraction module, dynamic feature fusion module, and balanced mean square error (MSE) loss. The transformation and feature extraction modules are employed by using the PSA to learn multiscale and multi‐orientation feature representations in a parallel weight‐sharing Siamese network. The dynamic feature fusion module automatically learns the weights of feature vectors generated in the feature extraction module to dynamically fuse multiscale and multi‐orientation brain sulci and gyri features. Considering the fact of the imbalanced dataset, the balanced MSE loss is used to mitigate the negative impact of imbalanced data distribution on gestational age prediction performance. Results Evaluated on an imbalanced fetal brain MRI dataset of 1327 routine clinical T2‐weighted MRI images from 157 subjects, PDFF‐CNN achieved promising gestational age prediction performance with an overall mean absolute error of 0.848 weeks and an of 0.904. Furthermore, the attention activation maps of PDFF‐CNN were derived, which revealed regional features that contributed to gestational age prediction at each gestational stage. Conclusions These results suggest that the proposed PDFF‐CNN might have broad clinical applicability in guiding treatment interventions and delivery planning, which has the potential to be helpful with prenatal diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TK完成签到 ,获得积分0
刚刚
1秒前
3秒前
赘婿应助yanzilin采纳,获得10
3秒前
Choi发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
漫画发布了新的文献求助10
6秒前
辣椒炒肉1完成签到,获得积分20
6秒前
7秒前
orixero应助一条帅龙龙采纳,获得10
9秒前
852应助夏紫儿采纳,获得10
9秒前
共享精神应助bk采纳,获得10
10秒前
10秒前
10秒前
kai完成签到,获得积分10
12秒前
12秒前
Jiaox发布了新的文献求助10
12秒前
呆萌的雪晴完成签到,获得积分10
12秒前
淡定翠容发布了新的文献求助10
13秒前
14秒前
527发布了新的文献求助10
14秒前
14秒前
Shmily发布了新的文献求助10
15秒前
上官小怡发布了新的文献求助10
15秒前
田様应助闹闹加油采纳,获得10
17秒前
18秒前
19秒前
19秒前
华仔应助xiaoyudian采纳,获得10
19秒前
finish完成签到,获得积分10
19秒前
无心的星月完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助30
22秒前
527完成签到,获得积分10
22秒前
一条帅龙龙完成签到,获得积分20
23秒前
温酒叙人生完成签到,获得积分20
24秒前
杜祖盛发布了新的文献求助10
24秒前
bk发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863